espressomd package

Subpackages

Submodules

espressomd.accumulators module

class espressomd.accumulators.AutoUpdateAccumulators(**kwargs)[source]

Bases: espressomd.script_interface.ScriptObjectList

Class for handling the auto-update of accumulators used by espressomd.system.System.

add(accumulator)[source]

Adds an accumulator instance to the auto-update list.

clear()[source]

Removes all accumulators from the auto-update list.

remove(accumulator)[source]

Removes an accumulator from the auto-update list.

class espressomd.accumulators.Correlator(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Calculates the correlation of two observables \(A\) and \(B\), or of one observable against itself (i.e. \(B = A\)). The correlation can be compressed using the multiple tau correlation algorithm.

The operation that is performed on \(A(t)\) and \(B(t+\tau)\) to obtain \(C(\tau)\) depends on the corr_operation argument:

  • "scalar_product": Scalar product of \(A\) and \(B\), i.e., \(C=\sum\limits_{i} A_i B_i\)

  • "componentwise_product": Componentwise product of \(A\) and \(B\), i.e., \(C_i = A_i B_i\)

  • "square_distance_componentwise": Each component of the correlation vector is the square of the difference between the corresponding components of the observables, i.e., \(C_i = (A_i-B_i)^2\). Example: when \(A\) is espressomd.observables.ParticlePositions, it produces the mean square displacement (for each component separately).

  • "tensor_product": Tensor product of \(A\) and \(B\), i.e., \(C_{i \cdot l_B + j} = A_i B_j\) with \(l_B\) the length of \(B\).

  • "fcs_acf": Fluorescence Correlation Spectroscopy (FCS) autocorrelation function, i.e.,

    \[G_i(\tau) = \frac{1}{N} \left< \exp \left( - \frac{\Delta x_i^2(\tau)}{w_x^2} - \frac{\Delta y_i^2(\tau)}{w_y^2} - \frac{\Delta z_i^2(\tau)}{w_z^2} \right) \right>\]

    where \(N\) is the average number of fluorophores in the illumination area,

    \[\Delta x_i^2(\tau) = \left( x_i(0) - x_i(\tau) \right)^2\]

    is the square displacement of particle \(i\) in the \(x\) direction, and \(w_x\) is the beam waist of the intensity profile of the exciting laser beam,

    \[W(x,y,z) = I_0 \exp \left( - \frac{2x^2}{w_x^2} - \frac{2y^2}{w_y^2} - \frac{2z^2}{w_z^2} \right).\]

    The values of \(w_x\), \(w_y\), and \(w_z\) are passed to the correlator as args. The correlator calculates

    \[C_i(\tau) = \exp \left( - \frac{\Delta x_i^2(\tau)}{w_x^2} - \frac{\Delta y_i^2(\tau)}{w_y^2} - \frac{\Delta z_i^2(\tau)}{w_z^2} \right)\]

    Per each 3 dimensions of the observable, one dimension of the correlation output is produced. If "fcs_acf" is used with other observables than espressomd.observables.ParticlePositions, the physical meaning of the result is unclear.

    The above equations are a generalization of the formula presented by Höfling et al. [Höfling et al., 2011]. For more information, see references therein.

Parameters
  • obs1 (espressomd.observables.Observable) – The observable \(A\) to be correlated with \(B\) (obs2). If obs2 is omitted, autocorrelation of obs1 is calculated by default.

  • obs2 (espressomd.observables.Observable, optional) – The observable \(B\) to be correlated with \(A\) (obs1).

  • corr_operation (str) – The operation that is performed on \(A(t)\) and \(B(t+\tau)\).

  • delta_N (int) – Number of timesteps between subsequent samples for the auto update mechanism.

  • tau_max (float) – This is the maximum value of \(\tau\) for which the correlation should be computed. Warning: Unless you are using the multiple tau correlator, choosing tau_max of more than 100 * dt will result in a huge computational overhead. In a multiple tau correlator with reasonable parameters, tau_max can span the entire simulation without too much additional cpu time.

  • tau_lin (int) – The number of data-points for which the results are linearly spaced in tau. This is a parameter of the multiple tau correlator. If you want to use it, make sure that you know how it works. tau_lin must be divisible by 2. By setting tau_lin such that tau_max >= dt * delta_N * tau_lin, the multiple tau correlator is used, otherwise the trivial linear correlator is used. By setting tau_lin = 1, the value will be overridden by tau_lin = ceil(tau_max / (dt * delta_N)), which will result in either the multiple or linear tau correlator. In many cases, tau_lin=16 is a good choice but this may strongly depend on the observables you are correlating. For more information, we recommend to read ref. [Ramirez et al., 2010] or to perform your own tests.

  • compress1 (str) – These functions are used to compress the data when going to the next level of the multiple tau correlator. This is done by producing one value out of two. The following compression functions are available:

    • "discard2": (default value) discard the second value from the time series, use the first value as the result

    • "discard1": discard the first value from the time series, use the second value as the result

    • "linear": make a linear combination (average) of the two values

    If only compress1 is specified, then the same compression function is used for both observables. If both compress1 and compress2 are specified, then compress1 is used for obs1 and compress2 for obs2.

    Both discard1 and discard2 are safe for all observables but produce poor statistics in the tail. For some observables, "linear" compression can be used which makes an average of two neighboring values but produces systematic errors. Depending on the observable, the systematic error using the "linear" compression can be anything between harmless and disastrous. For more information, we recommend to read ref. [Ramirez et al., 2010] or to perform your own tests.

  • compress2 (str, optional) – See compress1.

  • args (float of length 3) – Three floats which are passed as arguments to the correlation function. Currently it is only used by "fcs_acf", which will square these values in the core; if you later decide to update these weights with obs.args = [...], you’ll have to provide already squared values! Other correlation operations will ignore these values.

lag_times()[source]
Returns

Lag times of the correlation.

Return type

ndarray of float

result()[source]

Get correlation.

Returns

The result of the correlation function. The shape of the array is determined by the shape of the input observable(s) and the correlation operation.

Return type

ndarray of float

sample_sizes()[source]
Returns

Samples sizes for each lag time.

Return type

ndarray of int

class espressomd.accumulators.MeanVarianceCalculator(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Accumulates results from observables.

Parameters
update()

Update the accumulator (get the current values from the observable).

mean()[source]

Returns the samples mean values of the respective observable with which the accumulator was initialized.

std_error()[source]

Returns the standard error calculated from the samples variance for the observable by assuming uncorrelated samples.

variance()[source]

Returns the samples variance for the observable.

class espressomd.accumulators.TimeSeries(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Records results from observables.

Parameters
update()

Update the accumulator (get the current values from the observable).

clear()

Clear the data

time_series()[source]

Returns the recorded values of the observable.

espressomd.actors module

class espressomd.actors.Actors[source]

Bases: object

Container for actor objects.

active_actors = []
add(actor)[source]
Parameters

actor – Actor to add to this container.

clear()[source]

Remove all actors.

remove(actor)[source]
Parameters

actor – Actor to remove from this container.

espressomd.analyze module

class espressomd.analyze.Analysis(system)

Bases: object

angular_momentum(self, p_type=None)

Calculates the system’s angular momentum with respect to the origin.

Note that virtual sites are not included, as they do not have a meaningful mass.

Parameters

p_type (int) – Particle type for which to calculate the center of mass.

Returns

The center of mass of the system.

Return type

(3,) ndarray of float

calc_re(self, chain_start=None, number_of_chains=None, chain_length=None)

Calculate the mean end-to-end distance of chains and its standard deviation, as well as mean square end-to-end distance of chains and its standard deviation.

This requires that a set of chains of equal length which start with the particle number chain_start and are consecutively numbered, the last particle in that topology having id number chain_start + number_of_chains * chain_length - 1.

Parameters
  • chain_start (int) – The id of the first monomer of the first chain.

  • number_of_chains (int) – Number of chains contained in the range.

  • chain_length (int) – The length of every chain.

Returns

Where [0] is the mean end-to-end distance of chains and [1] its standard deviation, [2] the mean square end-to-end distance and [3] its standard deviation.

Return type

(4,) array_like of float

calc_rg(self, chain_start=None, number_of_chains=None, chain_length=None)

Calculate the mean radius of gyration of chains and its standard deviation, as well as the mean square radius of gyration of chains and its standard deviation.

This requires that a set of chains of equal length which start with the particle number chain_start and are consecutively numbered, the last particle in that topology having id number chain_start + number_of_chains * chain_length - 1.

The radius of gyration is the radius of a sphere which would have the same moment of inertia as a polymer, and is defined as

\[R_{\mathrm G}^2 = \frac{1}{N} \sum\limits_{i=1}^{N} \left(\vec r_i - \vec r_{\mathrm{cm}}\right)^2\,,\]

where \(\vec r_i\) are position vectors of individual particles constituting the polymer and \(\vec r_{\mathrm{cm}}\) is the position of its center of mass. The sum runs over all \(N\) particles comprising the polymer. For more information see any polymer science book, e.g. [Rubinstein and Colby, 2003].

Parameters
  • chain_start (int) – The id of the first monomer of the first chain.

  • number_of_chains (int) – Number of chains contained in the range.

  • chain_length (int) – The length of every chain.

Returns

Where [0] is the mean radius of gyration of the chains and [1] its standard deviation, [2] the mean square radius of gyration and [3] its standard deviation.

Return type

(4,) array_like of float

calc_rh(self, chain_start=None, number_of_chains=None, chain_length=None)

Calculate the hydrodynamic mean radius of chains and its standard deviation.

This requires that a set of chains of equal length which start with the particle number chain_start and are consecutively numbered, the last particle in that topology having id number chain_start + number_of_chains * chain_length - 1.

The following formula is used for the calculation:

\[\frac{1}{R_{\mathrm H}} = \frac{2}{N(N-1)} \sum\limits_{i=1}^{N} \sum\limits_{j<i}^{N} \frac{1}{|\vec r_i - \vec r_j|}\,,\]

This formula is only valid under certain assumptions. For more information, see chapter 4 and equation 4.102 in [Doi and Edwards, 1986]. Note that the hydrodynamic radius is sometimes defined in a similar fashion but with a denominator of \(N^2\) instead of \(N(N-1)\) in the prefactor. Both versions are equivalent in the \(N\rightarrow \infty\) limit but give numerically different values for finite polymers.

Parameters
  • chain_start (int) – The id of the first monomer of the first chain

  • number_of_chains (int) – Number of chains contained in the range.

  • chain_length (int) – The length of every chain.

Returns

Where [0] is the mean hydrodynamic radius of the chains and [1] its standard deviation.

Return type

(2,) array_like of float

center_of_mass(self, p_type=None)

Calculate the system’s center of mass.

Note that virtual sites are not included, as they do not have a meaningful mass.

Parameters

p_type (int) – Particle type for which to calculate the center of mass.

Returns

The center of mass of the system.

Return type

array of float

check_topology(self, chain_start=None, number_of_chains=None, chain_length=None)
distribution(self, type_list_a=None, type_list_b=None, r_min=0.0, r_max=None, r_bins=100, log_flag=0, int_flag=0)

Calculates the distance distribution of particles (probability of finding a particle of type A at a certain distance around a particle of type B, disregarding the fact that a spherical shell of a larger radius covers a larger volume). The distance is defined as the minimal distance between a particle of group type_list_a to any of the group type_list_b (excluding the self-contribution). Returns two arrays, the bins and the (normalized) distribution.

Parameters
  • type_list_a (list of int) – List of particle type, only consider distances from these types.

  • type_list_b (list of int) – List of particle type, only consider distances to these types.

  • r_min (float) – Minimum distance.

  • r_max (float) – Maximum distance. By default, it is half the box size. A value larger than half the box size is allowed for systems with open boundary conditions.

  • r_bins (int) – Number of bins.

  • log_flag (bool) – When set to False, the bins are linearly equidistant; when set to True, the bins are logarithmically equidistant.

  • int_flag (bool) – When set to True, the result is an integrated distribution.

Returns

Where [0] contains the midpoints of the bins, and [1] contains the values of the rdf.

Return type

ndarray

dpd_stress(self)
energy(self)

Calculate the system energy in parallel.

Returns

A dictionary with the following keys:

  • "total": total energy

  • "kinetic": linear and rotational kinetic energy

  • "bonded": total bonded energy

  • "bonded", <bond_id>: bonded energy from the bond identified by bond_id

  • "non_bonded": total non-bonded energy

  • "non_bonded", <type_i>, <type_j>: non-bonded energy from short-range interactions between type_i and type_j

  • "non_bonded_intra", <type_i>, <type_j>: non-bonded energy from short-range interactions between type_i and type_j with the same mol_id

  • "non_bonded_inter", <type_i>, <type_j>: non-bonded energy from short-range interactions between type_i and type_j with different mol_id

  • "coulomb": Coulomb energy, how it is calculated depends on the method

  • "coulomb", <i>: Coulomb energy from particle pairs (i=0), electrostatics solvers (i=1)

  • "dipolar": dipolar energy

  • "dipolar", <i>: dipolar energy from particle pairs and magnetic field constraints (i=0), magnetostatics solvers (i=1)

  • "external_fields": external fields contribution

Return type

dict

Examples

>>> energy = system.analysis.energy()
>>> print(energy["total"])
>>> print(energy["kinetic"])
>>> print(energy["bonded"])
>>> print(energy["non_bonded"])
>>> print(energy["external_fields"])
gyration_tensor(self, p_type=None)

Analyze the gyration tensor of particles of a given type or of all particles in the system if no type is given.

Parameters

p_type (list of int, optional) – A particle type, or list of all particle types to be considered.

Returns

A dictionary with the following keys:

  • "Rg^2": squared radius of gyration

  • "shape": three shape descriptors (asphericity, acylindricity, and relative shape anisotropy)

  • "eva0": eigenvalue 0 of the gyration tensor and its corresponding eigenvector.

  • "eva1": eigenvalue 1 of the gyration tensor and its corresponding eigenvector.

  • "eva2": eigenvalue 2 of the gyration tensor and its corresponding eigenvector.

The eigenvalues are sorted in descending order.

Return type

dict

linear_momentum(self, include_particles=True, include_lbfluid=True)

Calculates the system’s linear momentum.

Parameters
  • include_particles (bool, optional) – whether to include the particles contribution to the linear momentum.

  • include_lbfluid (bool, optional) – whether to include the lattice-Boltzmann fluid contribution to the linear momentum.

Returns

The linear momentum of the system.

Return type

float

min_dist(self, p1='default', p2='default')

Minimal distance between two sets of particle types.

Parameters

p1, p2 (lists of int) – Particle type in both sets. If both are set to 'default', the minimum distance of all pairs is returned.

moment_of_inertia_matrix(self, p_type=None)

Returns the 3x3 moment of inertia matrix for particles of a given type.

Parameters

p_type (int) – A particle type

Returns

3x3 moment of inertia matrix.

Return type

ndarray

nbhood(self, pos=None, r_catch=None)

Get all particles in a defined neighborhood.

Parameters
  • pos (array of float) – Reference position for the neighborhood.

  • r_catch (float) – Radius of the region.

Returns

The neighbouring particle ids.

Return type

array of int

particle_energy(self, particle)

Calculate the non-bonded energy of a single given particle.

Parameters

particle (ParticleHandle)

Returns

non-bonded energy of that particle

Return type

obj: float

pressure(self)

Calculate the instantaneous scalar pressure in parallel. This is only sensible in an isotropic system which is homogeneous (on average)! Do not use this in an anisotropic or inhomogeneous system. In order to obtain the pressure, the ensemble average needs to be calculated.

Returns

A dictionary with the following keys:

  • "total": total pressure

  • "kinetic": kinetic pressure

  • "bonded": total bonded pressure

  • "bonded", <bond_id>: bonded pressure from the bond identified by bond_id

  • "non_bonded": total non-bonded pressure

  • "non_bonded", <type_i>, <type_j>: non-bonded pressure which arises from the interactions between type_i and type_j

  • "non_bonded_intra", <type_i>, <type_j>: non-bonded pressure from short-range forces between type_i and type_j with the same mol_id

  • "non_bonded_inter", <type_i>, <type_j>: non-bonded pressure from short-range forces between type_i and type_j with different mol_id

  • "coulomb": Coulomb pressure, how it is calculated depends on the method. It is equivalent to 1/3 of the trace of the Coulomb pressure tensor. For how the pressure tensor is calculated, see Pressure Tensor. The averaged value in an isotropic NVT simulation is equivalent to the average of \(E^{\mathrm{coulomb}}/(3V)\), see [Brown and Neyertz, 1995].

  • "coulomb", <i>: Coulomb pressure from particle pairs (i=0), electrostatics solvers (i=1)

  • "dipolar": not implemented

  • "virtual_sites": Pressure contribution from virtual sites

  • "external_fields": external fields contribution

Return type

dict

pressure_tensor(self)

Calculate the instantaneous pressure tensor in parallel. This is sensible in an anisotropic system. Still it assumes that the system is homogeneous since the volume-averaged pressure tensor is used. Do not use this pressure tensor in an (on average) inhomogeneous system. If the system is (on average inhomogeneous) then use a local pressure tensor. In order to obtain the pressure tensor, the ensemble average needs to be calculated.

Returns

A dictionary with the following keys:

  • "total": total pressure tensor

  • "kinetic": kinetic pressure tensor

  • "bonded": total bonded pressure tensor

  • "bonded", <bond_id>: bonded pressure tensor from the bond identified by bond_id

  • "non_bonded": total non-bonded pressure tensor

  • "non_bonded", <type_i>, <type_j>: non-bonded pressure tensor from short-range forces between type_i and type_j

  • "non_bonded_intra", <type_i>, <type_j>: non-bonded pressure tensor from short-range forces between type_i and type_j with the same mol_id

  • "non_bonded_inter", <type_i>, <type_j>: non-bonded pressure tensor from short-range forces between type_i and type_j with different mol_id

  • "coulomb": Maxwell pressure tensor, how it is calculated depends on the method

  • "coulomb", <i>: Maxwell pressure tensor from particle pairs (i=0), electrostatics solvers (i=1)

  • "dipolar": not implemented

  • "virtual_sites": pressure tensor contribution from virtual sites

  • "external_fields": external fields contribution

Return type

dict

structure_factor(self, sf_types=None, sf_order=None)

Calculate the structure factor for given types. Returns the spherically averaged structure factor of particles specified in sf_types. The structure factor is calculated for all possible wave vectors q up to sf_order. Do not choose parameter sf_order too large because the number of calculations grows as sf_order to the third power.

Parameters
  • sf_types (list of int) – Specifies which particle type should be considered.

  • sf_order (int) – Specifies the maximum wavevector.

Returns

Where [0] contains q and [1] contains the structure factor s(q)

Return type

ndarray

espressomd.analyze.autocorrelation(time_series)

Calculate the unnormalized autocorrelation function \(R_{XX}\) of an observable \(X\) measured at time \(t\) with constant time step for lag times \(\tau\) such that:

\(\displaystyle R_{XX}(\tau) = \frac{1}{N - \tau} \sum_{t=0}^{N - \tau} X_{t} \cdot X_{t + \tau}\)

This is a scipy implementation of the algorithm described in [de Buyl, 2018] that uses FFT. This implementation:

  • doesn’t subtract the mean of the time series before calculating the ACF,

  • doesn’t normalize the ACF by the variance of the time series,

  • assumes the time series is aperiodic (i.e. uses zero-padding).

Parameters

time_series ((N,) or (N, M) array_like of float) – Time series to correlate. For multi-dimensional data, M is the number of columns.

Returns

The time series autocorrelation function.

Return type

(N,) array_like of float

espressomd.bond_breakage module

class espressomd.bond_breakage.BreakageSpec(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Specifications for bond breakage. See Deleting bonds when particles are pulled apart for more details.

Parameters
  • breakage_length (float) – Maximal bond extension until the bond breaks.

  • action_type (str, {‘delete_bond’, ‘revert_bind_at_point_of_collision’, ‘none’}) – Action triggered when the bond reaches its maximal extension.

class espressomd.bond_breakage.BreakageSpecs(**kwargs)[source]

Bases: espressomd.script_interface.ScriptObjectMap

espressomd.cell_system module

class espressomd.cell_system.CellSystem(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

This class controls the particle decomposition.

decomposition_type

Name of the currently active particle decomposition.

Type

str

use_verlet_lists

Whether to use Verlet lists.

Type

bool

skin

Verlet list skin.

Type

float

node_grid

MPI repartition for the regular decomposition cell system.

Type

(3,) array_like of int

max_cut_bonded

Maximal range from bonded interactions.

Type

float

max_cut_nonbonded

Maximal range from non-bonded interactions.

Type

float

interaction_range

Maximal interaction range from all interactions, or -1 when no interactions are active (or their cutoff has no impact when only 1 MPI rank is used).

Type

float

resort()

Resort the particles in the cell system.

Parameters

global_flag (bool, optional) – If true (default), a global resorting is done, otherwise particles are only exchanged between neighboring nodes.

Returns

The number of particles per node.

Return type

(N,) array_like of int

tune_skin()

Tune the skin by measuring the integration time and bisecting over the given range of skins. The best skin is set in the simulation core.

Parameters
  • min_skin (float) – Minimum skin to test.

  • max_skin (float) – Maximum skin.

  • tol (float) – Accuracy in skin to tune to.

  • int_steps (int) – Integration steps to time.

  • adjust_max_skin (bool, optional) – If True, the value of max_skin is reduced to the maximum permissible skin (in case the passed value is too large). Defaults to False.

Returns

The skin

Return type

float

get_state()

Get the current state of the cell system.

Returns

The cell system state.

Return type

dict

get_neighbors(particle, distance)[source]

Get neighbors of a given particle up to a certain distance.

The choice of cell systems has an impact on how far the algorithm can detect particle pairs:

  • N-square: no restriction on the search distance, no double counting if search distance is larger than the box size

  • regular decomposition: the search distance is bounded by half the local cell geometry

  • hybrid decomposition: not supported

Parameters
  • particle (ParticleHandle)

  • distance (float) – Pairs of particles closer than distance are found.

Returns

The list of neighbor particles surrounding the particle

Return type

(N,) array_like of int

get_pairs(distance, types='all')[source]

Get pairs of particles closer than threshold value.

Parameters
  • distance (float) – Pairs of particles closer than distance are found.

  • types (list of int or 'all', optional) – Restrict the pair search to the specified types. Defaults to 'all', in which case all particles are considered.

Returns

The particle pairs identified by their index

Return type

list of tuples of int

Raises

Exception – If the pair search distance is greater than the cell size

non_bonded_loop_trace()[source]
set_hybrid_decomposition(**kwargs)[source]

Activate the hybrid domain decomposition.

Parameters
  • cutoff_regular (float) – Maximum cutoff to consider in regular decomposition. Should be as low as the system permits.

  • n_square_types (list of int, optional) – Particles types that should be handled in the N-square cell system. Defaults to an empty list.

  • use_verlet_lists (bool, optional) – Activates or deactivates the usage of Verlet lists. Defaults to True.

set_n_square(**kwargs)[source]

Activate the N-square cell system.

Parameters

use_verlet_lists (bool, optional) – Activates or deactivates the usage of Verlet lists. Defaults to True.

set_regular_decomposition(**kwargs)[source]

Activate the regular decomposition cell system.

Parameters

use_verlet_lists (bool, optional) – Activates or deactivates the usage of Verlet lists. Defaults to True.

espressomd.checkpointing module

class espressomd.checkpointing.Checkpoint(checkpoint_id=None, checkpoint_path='.')[source]

Bases: object

Checkpoint handling (reading and writing).

Parameters
  • checkpoint_id (str) – A string identifying a specific checkpoint.

  • checkpoint_path (str, optional) – Path for reading and writing the checkpoint. If not given, the current working directory is used.

get_last_checkpoint_index()[source]

Returns the last index of the given checkpoint id. Will raise exception if no checkpoints are found.

get_registered_objects()[source]

Returns a list of all object names that are registered for checkpointing.

has_checkpoints()[source]

Check for checkpoints.

Returns

True if any checkpoints exist that match checkpoint_id and checkpoint_path otherwise False.

Return type

bool

load(checkpoint_index=None)[source]

Loads the python objects using (c)Pickle and sets them in the calling module.

Parameters

checkpoint_index (int, optional) – If not given, the last checkpoint_index will be used.

read_signals()[source]

Reads all registered signals from the signal file and returns a list of integers.

register(*args)[source]

Register python objects for checkpointing.

Parameters

args (list of str) – Names of python objects to be registered for checkpointing.

register_signal(signum=None)[source]

Register a signal that will trigger the signal handler.

Parameters

signum (int) – Signal to be registered.

save(checkpoint_index=None)[source]

Saves all registered python objects in the given checkpoint directory using cPickle.

unregister(*args)[source]

Unregister python objects for checkpointing.

Parameters

args (list of str) – Names of python objects to be unregistered for checkpointing.

espressomd.cluster_analysis module

class espressomd.cluster_analysis.Cluster(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Class representing a cluster of particles.

particle_ids()

Returns list of particle ids in the cluster

size()

Returns the number of particles in the cluster

center_of_mass()

Center of mass of the cluster (folded coordinates)

longest_distance()

Longest distance between any combination of two particles in the cluster

fractal_dimension(dr=None)

Estimates the cluster’s fractal dimension by fitting the number of particles \(n\) in spheres of growing radius around the center of mass to \(c*r_g^d\), where \(r_g\) is the radius of gyration of the particles within the sphere, and \(d\) is the fractal dimension.

Note

Requires GSL external feature, enabled with -DWITH_GSL=ON.

Parameters

dr (float) – Minimum increment for the radius of the spheres.

Returns

Fractal dimension and mean square residual.

Return type

tuple

particles()[source]

Get particles in the cluster.

Returns

Return type

espressomd.particle_data.ParticleSlice

class espressomd.cluster_analysis.ClusterStructure(*args, **kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Cluster structure of a simulation system, and access to cluster analysis

Parameters

pair_criterion (espressomd.pair_criteria._PairCriterion) – Criterion to decide whether two particles are neighbors.

cid_for_particle(p)[source]

Returns cluster id for the particle.

Parameters

p (espressomd.particle_data.ParticleHandle or int containing the particle id) – Particle.

clear()[source]

Clears the cluster structure.

cluster_ids()[source]

Returns a list of all cluster ids of the clusters in the structure.

property clusters

Gives access to the clusters in the cluster structure via an instance of Clusters.

run_for_all_pairs()[source]

Runs the cluster analysis, considering all pairs of particles in the system

run_for_bonded_particles()[source]

Runs the cluster analysis, considering only pairs of particles connected by a pair-bond.

class espressomd.cluster_analysis.Clusters(cluster_structure)[source]

Bases: object

Access to the clusters in the cluster structure.

Access is as follows:

  • number of clusters: len(clusters)

  • access a cluster via its id: clusters[id]

  • iterate over clusters (yields (id, cluster) tuples)

Example:

>>> for cluster_id, cluster in clusters:
...     print(f"{cluster_id=} CoM={cluster.center_of_mass()}")
cluster_id=1 CoM=[1.71834061 1.54988961 1.54734631]

espressomd.collision_detection module

class espressomd.collision_detection.CollisionDetection(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Interface to the collision detection / dynamic binding.

See Creating bonds when particles collide for detailed instructions.

This class should not be instantiated by the user. Instead, use the collision_detection attribute of the system class to access the collision detection.

Use method set_params() to change the parameters of the collision detection.

get_parameter(name)[source]

Gets a single parameter from the collision detection.

get_params()[source]

Returns the parameters of the collision detection as dict.

set_params(**kwargs)[source]

Set the parameters for the collision detection

See Creating bonds when particles collide for detailed instructions.

Parameters
  • mode (str, {“off”, “bind_centers”, “bind_at_point_of_collision”, “bind_three_particles”, “glue_to_surface”}) – Collision detection mode

  • distance (float) – Distance below which a pair of particles is considered in the collision detection

  • bond_centers (espressomd.interactions.BondedInteraction) – Bond to add between the colliding particles

  • bond_vs (espressomd.interactions.BondedInteraction) – Bond to add between virtual sites (for modes using virtual sites)

  • part_type_vs (int) – Particle type of the virtual sites being created on collision (virtual sites based modes)

  • part_type_to_be_glued (int) – particle type for "glue_to_surface" mode. See user guide.

  • part_type_to_attach_vs_to (int) – particle type for "glue_to_surface" mode. See user guide.

  • part_type_after_glueing (int) – particle type for "glue_to_surface" mode. See user guide.

  • distance_glued_particle_to_vs (float) – Distance for "glue_to_surface" mode. See user guide.

  • bond_three_particles (espressomd.interactions.BondedInteraction) – First angular bond for the "bind_three_particles" mode. See user guide

  • three_particle_binding_angle_resolution (int) – Resolution for the angular bonds (mode "bind_three_particles"). Resolution+1 bonds are needed to accommodate the case of 180 degrees angles

espressomd.comfixed module

class espressomd.comfixed.ComFixed(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Fix the center of mass of specific types.

Subtracts mass-weighted fraction of the total force action on all particles of the type from the particles after each force calculation. This keeps the center of mass of the type fixed iff the total momentum of the type is zero.

Parameters

types (array_like) – List of types for which the center of mass should be fixed.

espressomd.constraints module

class espressomd.constraints.Constraint(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Base class for constraints. A constraint provides a force and an energy contribution for a single particle.

class espressomd.constraints.Constraints(**kwargs)[source]

Bases: espressomd.script_interface.ScriptObjectList

List of active constraints. Add a espressomd.constraints.Constraint to make it active in the system, or remove it to make it inactive.

add(*args, **kwargs)[source]

Add a constraint to the list.

Parameters
Returns

constraint – The added constraint

Return type

espressomd.constraints.Constraint

clear()[source]

Remove all constraints.

remove(constraint)[source]

Remove a constraint from the list.

Parameters

constraint (espressomd.constraints.Constraint)

class espressomd.constraints.ElectricPlaneWave(phi=0, **kwargs)[source]

Bases: espressomd.constraints.Constraint

Electric field of the form

\(\vec{E} = \vec{E_0} \cdot \sin(\vec{k} \cdot \vec{x} + \omega \cdot t + \phi)\)

The resulting force on the particles are then

\(\vec{F} = q \cdot \vec{E}\)

where \(q\) and \(\vec{x}\) are the particle charge and position in folded coordinates. This can be used to generate a homogeneous AC field by setting \(\vec{k}\) to the null vector. For periodic systems, \(\vec{k}\) must be an integer multiple of \(2\pi \vec{L}^{-1}\) with \(\vec{L}\) the box length.

Parameters
  • E0 (array_like of float) – Amplitude of the electric field.

  • k (array_like of float) – Wave vector of the wave

  • omega (float) – Frequency of the wave

  • phi (float, optional) – Phase

property E0
property k
property omega
property phi
class espressomd.constraints.ElectricPotential(**kwargs)[source]

Bases: espressomd.constraints._Interpolated

Electric potential interpolated from provided data. The electric field \(\vec{E}\) is calculated numerically from the potential, and the resulting force on the particles are

\(\vec{F} = q \cdot \vec{E}\)

where \(q\) is the charge of the particle.

Parameters
  • field ((M, N, O, 1) array_like of float) – Potential on a grid of size (M, N, O)

  • grid_spacing ((3,) array_like of float) – Spacing of the grid points.

class espressomd.constraints.FlowField(**kwargs)[source]

Bases: espressomd.constraints._Interpolated

Viscous coupling to a flow field that is interpolated from tabulated data like

\(\vec{F} = -\gamma \cdot \left( \vec{u}(\vec{x}) - \vec{v} \right)\)

where \(\vec{v}\) and \(\vec{x}\) are the particle velocity and position in folded coordinates, and \(\vec{u}(\vec{x})\) is a 3D flow field on a grid.

Parameters
  • field ((M, N, O, 3) array_like of float) – Field velocity on a grid of size (M, N, O)

  • grid_spacing ((3,) array_like of float) – Spacing of the grid points.

  • gamma (float) – Coupling constant

class espressomd.constraints.ForceField(**kwargs)[source]

Bases: espressomd.constraints._Interpolated

A generic tabulated force field that applies a per-particle scaling factor.

Parameters
  • field ((M, N, O, 3) array_like of float) – Forcefield amplitude on a grid of size (M, N, O).

  • grid_spacing ((3,) array_like of float) – Spacing of the grid points.

  • default_scale (float) – Scaling factor for particles that have no individual scaling factor.

  • particle_scales (dict) – A dictionary mapping particle ids to scaling factors. For these particles, the interaction is scaled with their individual scaling factor. Other particles are scaled with the default scaling factor.

class espressomd.constraints.Gravity(**kwargs)[source]

Bases: espressomd.constraints.Constraint

Gravity force

\(\vec{F} = m \cdot \vec{g}\)

Parameters

g ((3,) array_like of float) – The gravitational constant.

property g
class espressomd.constraints.HomogeneousFlowField(**kwargs)[source]

Bases: espressomd.constraints.Constraint

Viscous coupling to a flow field that is constant in space with the force

\(\vec{F} = -\gamma \cdot (\vec{u} - \vec{v})\)

where \(\vec{v}\) is the velocity of the particle and \(\vec{u}\) is the constant flow field.

gamma

Coupling constant

Type

float

property u

Field velocity ((3,) array_like of float).

class espressomd.constraints.HomogeneousMagneticField(**kwargs)[source]

Bases: espressomd.constraints.Constraint

Homogeneous magnetic field \(\vec{H}\). The resulting force \(\vec{F}\), torque \(\vec{\tau}\) and energy U on the particles are then

\(\vec{F} = \vec{0}\)

\(\vec{\tau} = \vec{\mu} \times \vec{H}\)

\(U = -\vec{\mu} \cdot \vec{H}\)

where \(\vec{\mu}\) is the particle dipole moment.

H

Magnetic field vector. Describes both field direction and strength of the magnetic field (via length of the vector).

Type

(3,) array_like of float

class espressomd.constraints.LinearElectricPotential(phi0=0, **kwargs)[source]

Bases: espressomd.constraints.Constraint

Electric potential of the form

\(\phi = -\vec{E} \cdot \vec{x} + \phi_0\),

resulting in the electric field \(\vec{E}\) everywhere. The resulting force on the particles are then

\(\vec{F} = q \cdot \vec{E}\)

where \(q\) and \(\vec{x}\) are the particle charge and position in folded coordinates. This can be used to model a plate capacitor.

Parameters
  • E (array_like of float) – The electric field.

  • phi0 (float) – The potential at the origin

property E
property phi0
class espressomd.constraints.PotentialField(**kwargs)[source]

Bases: espressomd.constraints._Interpolated

A generic tabulated force field that applies a per-particle scaling factor. The forces are calculated numerically from the data by finite differences. The potential is interpolated from the provided data.

Parameters
  • field ((M, N, O, 1) array_like of float) – Potential on a grid of size (M, N, O).

  • grid_spacing ((3,) array_like of float) – Spacing of the grid points.

  • default_scale (float) – Scaling factor for particles that have no individual scaling factor.

  • particle_scales (dict) – A dictionary mapping particle ids to scaling factors. For these particles, the interaction is scaled with their individual scaling factor. Other particles are scaled with the default scaling factor.

class espressomd.constraints.ShapeBasedConstraint(**kwargs)[source]

Bases: espressomd.constraints.Constraint

only_positive

Act only in the direction of positive normal, only useful if penetrable is True.

Type

bool

particle_type

Interaction type of the constraint.

Type

int

particle_velocity

Interaction velocity of the boundary

Type

array_like of float

penetrable

Whether particles are allowed to penetrate the constraint.

Type

bool

shape

One of the shapes from espressomd.shapes

Type

espressomd.shapes.Shape

See also

espressomd.shapes

shape module that defines mathematical surfaces

Examples

>>> import espressomd
>>> import espressomd.shapes
>>> system = espressomd.System(box_l=3 * [10.])
>>>
>>> # create first a shape-object to define the constraint surface
>>> spherical_cavity = espressomd.shapes.Sphere(center=system.box_l / 2, radius=2.0, direction=-1.0)
>>>
>>> # now create an un-penetrable shape-based constraint of type 0
>>> spherical_constraint = system.constraints.add(particle_type=0, penetrable=False, shape=spherical_cavity)
>>>
>>> # place a trapped particle inside this sphere
>>> system.part.add(pos=0.51 * system.box_l, type=1)
min_dist()[source]

Calculates the minimum distance to all interacting particles.

Returns

The minimum distance

Return type

float

total_force()[source]

Get total force acting on this constraint.

Examples

>>> import espressomd
>>> import espressomd.shapes
>>> system = espressomd.System(box_l=[50., 50., 50.])
>>> system.time_step = 0.01
>>> system.thermostat.set_langevin(kT=0.0, gamma=1.0)
>>> system.cell_system.set_n_square(use_verlet_lists=False)
>>> system.non_bonded_inter[0, 0].lennard_jones.set_params(
...     epsilon=1, sigma=1, cutoff=2**(1. / 6), shift="auto")
>>>
>>> floor = system.constraints.add(
...    shape=espressomd.shapes.Wall(normal=[0, 0, 1], dist=0.0),
...    particle_type=0, penetrable=False, only_positive=False)
>>>
>>> p = system.part.add(pos=[0,0,1.5], type=0, ext_force=[0, 0, -.1])
>>> # print the particle position as it falls
>>> # and print the force it applies on the floor
>>> for t in range(10):
...     system.integrator.run(100)
...     print(p.pos, floor.total_force())
total_normal_force()[source]

Get the total summed normal force acting on this constraint.

espressomd.cuda_init module

class espressomd.cuda_init.CudaInitHandle

Bases: object

device

Get device.

Returns

Id of current set device.

Return type

int

list_devices(self)

List devices.

Returns

List of available CUDA devices.

Return type

dict

list_devices_properties(self)

List devices with their properties on each host machine.

Returns

List of available CUDA devices with their properties.

Return type

dict

espressomd.cuda_init.gpu_available()

espressomd.drude_helpers module

class espressomd.drude_helpers.DrudeHelpers[source]

Bases: object

Provides helper functions to assist in the creation of Drude particles.

add_all_thole(system, verbose=False)[source]

Calls add_thole_pair_damping() for all necessary combinations to create the interactions.

Parameters
add_drude_particle_to_core(system, harmonic_bond, thermalized_bond, p_core, type_drude, alpha, mass_drude, coulomb_prefactor, thole_damping=2.6, verbose=False)[source]

Adds a Drude particle with specified type and mass to the system and returns its espressomd.particle_data.ParticleHandle. Checks if different Drude particles have different types. Collects types/charges/polarizations/Thole factors for intramolecular core-Drude short-range exclusion and Thole interaction.

Parameters
  • system (espressomd.system.System)

  • harmonic_bond (espressomd.interactions.HarmonicBond) – Add this harmonic bond to between Drude particle and core

  • thermalized_bond (espressomd.interactions.ThermalizedBond) – Add this thermalized_bond to between Drude particle and core

  • p_core (espressomd.particle_data.ParticleHandle) – The existing core particle

  • type_drude (int) – The type of the newly created Drude particle

  • alpha (float) – The polarizability in units of inverse volume. Related to the charge of the Drude particle.

  • mass_drude (float) – The mass of the newly created Drude particle

  • coulomb_prefactor (float) – Required to calculate the charge of the Drude particle.

  • thole_damping (float) – Thole damping factor of the Drude pair. Comes to effect if add_all_thole() method is used.

  • verbose (bool) – Turns on verbosity.

Returns

The created Drude Particle.

Return type

espressomd.particle_data.ParticleHandle

add_intramol_exclusion_bonds(drude_parts, core_parts, verbose=False)[source]

Applies electrostatic short-range exclusion bonds for the given ids. Has to be applied for all molecules.

Parameters
  • system (espressomd.system.System)

  • drude_parts – List of Drude particles within a molecule.

  • core_parts – List of core particles within a molecule.

  • verbose (bool) – Turns on verbosity.

add_thole_pair_damping(system, t1, t2, verbose=False)[source]

Calculates mixed Thole factors depending on Thole damping and polarization. Adds non-bonded Thole interactions to the system.

Parameters
setup_and_add_drude_exclusion_bonds(system, verbose=False)[source]

Creates electrostatic short-range exclusion bonds for global exclusion between Drude particles and core charges and adds the bonds to the cores. Has to be called once after all Drude particles have been created.

Parameters
setup_intramol_exclusion_bonds(system, mol_drude_types, mol_core_types, mol_core_partial_charges, verbose=False)[source]

Creates electrostatic short-range exclusion bonds for intramolecular exclusion between Drude particles and partial charges of the cores. Has to be called once after all Drude particles have been created.

Parameters
  • system (espressomd.system.System)

  • mol_drude_types – List of types of Drude particles within the molecule

  • mol_core_types – List of types of core particles within the molecule

  • mol_core_partial_charges – List of partial charges of core particles within the molecule

  • verbose (bool) – Turns on verbosity.

espressomd.ekboundaries module

class espressomd.ekboundaries.EKBoundaries(**kwargs)[source]

Bases: espressomd.lbboundaries.LBBoundaries

Creates a set of electrokinetics boundaries.

class espressomd.ekboundaries.EKBoundary(**kwargs)[source]

Bases: espressomd.lbboundaries.LBBoundary

Creates a EK boundary.

espressomd.electrokinetics module

class espressomd.electrokinetics.Electrokinetics

Bases: espressomd.lb.HydrodynamicInteraction

Creates the electrokinetic method using the GPU unit.

add_boundary(self, shape)
add_reaction(self, shape)
add_species(self, species)

Initializes a new species for the electrokinetic method.

Parameters

species (int) – Species to be initialized.

default_params(self)

Returns the default parameters.

ek_init(self)

Initializes the electrokinetic system. This automatically initializes the lattice-Boltzmann method on the GPU.

get_params(self)

Prints out the parameters of the electrokinetic system.

load_checkpoint(self, path)
neutralize_system(self, species)

Sets the global density of a species to a specific value for which the whole system will have no net charge.

Note

The previous density of the species will be ignored and it will be homogeneous distributed over the whole system The species must be charged to begin with. If the neutralization would lead to a negative species density an exception will be raised.

Parameters

species (int) – The species which will be changed to neutralize the system.

required_keys(self)

Returns the necessary options to initialize the electrokinetic method.

save_checkpoint(self, path)
set_density(self, species=None, density=None, node=None)

Sets the density of a species at a specific node. If no node is given the density will be set global for the species.

Parameters
  • species (int) – species for which the density will apply.

  • density (float) – The value to which the density will be set to.

  • node (numpy-array of type int of length (3)) – If set the density will be only applied on this specific node.

valid_keys(self)

Returns the valid options used for the electrokinetic method.

validate_params(self)

Checks if the parameters for “stencil” and “fluid_coupling” are valid.

write_vtk_boundary(self, path)

Writes the boundary information into a vtk-file.

Parameters

path (str) – Path of the .vtk file the boundary is written to.

write_vtk_density(self, path)

Writes the LB density information into a vtk-file.

Parameters

path (str) – Path of the .vtk file the LB density is written to.

write_vtk_lbforce(self, path)

Writes the LB force information into a vtk-file.

Parameters

path (str) – Path of the .vtk file the LB force is written to.

write_vtk_particle_potential(self, path)

Writes the electrostatic particle potential into a vtk-file.

Note

This only works if ‘es_coupling’ is active.

Parameters

path (str) – Path of the .vtk file the electrostatic potential is written to.

write_vtk_potential(self, path)

Writes the electrostatic potential into a vtk-file.

Parameters

path (str) – Path of the .vtk file the electrostatic potential is written to.

write_vtk_velocity(self, path)

Writes the lattice-Boltzmann velocity information into a vtk-file.

Parameters

path (str) – Path of the .vtk file the velocity is written to.

class espressomd.electrokinetics.ElectrokineticsRoutines

Bases: espressomd.lb.LBFluidRoutines

potential
class espressomd.electrokinetics.SpecieRoutines(key, id)

Bases: object

density
flux
class espressomd.electrokinetics.Species(**kwargs)

Bases: object

Creates a species object that is passed to the ek instance.

default_params(self)

Returns the default parameters for the species.

get_params(self)

Returns the parameters of the species.

id = -1
py_number_of_species = 0
required_keys(self)

Returns the required keys for the species.

valid_keys(self)

Returns the valid keys for the species.

write_vtk_density(self, path)

Writes the species density into a vtk-file.

Parameters

path (str) – Path of the .vtk file the species density is written to.

write_vtk_flux(self, path)

Writes the species flux into a vtk-file.

Parameters

path (str) – Path of the .vtk file the species flux is written to.

write_vtk_flux_fluc(self, path)

espressomd.electrostatic_extensions module

class espressomd.electrostatic_extensions.ElectrostaticExtensions(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]
class espressomd.electrostatic_extensions.ICC(**kwargs)[source]

Bases: espressomd.electrostatic_extensions.ElectrostaticExtensions

Interface to the induced charge calculation scheme for dielectric interfaces. See Dielectric interfaces with the ICC\star algorithm for more details.

Parameters
  • n_icc (int) – Total number of ICC Particles.

  • first_id (int, optional) – ID of the first ICC Particle.

  • convergence (float, optional) – Abort criteria of the iteration. It corresponds to the maximum relative change of any of the interface particle’s charge.

  • relaxation (float, optional) – SOR relaxation parameter.

  • ext_field (float, optional) – Homogeneous electric field added to the calculation of dielectric boundary forces.

  • max_iterations (int, optional) – Maximal number of iterations.

  • eps_out (float, optional) – Relative permittivity of the outer region (where the particles are).

  • normals ((n_icc, 3) array_like float) – Normal vectors pointing into the outer region.

  • areas ((n_icc, ) array_like float) – Areas of the discretized surface.

  • sigmas ((n_icc, ) array_like float, optional) – Additional surface charge density in the absence of any charge induction.

  • epsilons ((n_icc, ) array_like float) – Dielectric constant associated to the areas.

default_params()[source]
last_iterations()[source]

Number of iterations needed in last relaxation to reach the convergence criterion.

Returns

iterations – Number of iterations

Return type

int

required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

espressomd.electrostatics module

class espressomd.electrostatics.DH(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Electrostatics solver based on the Debye-Hueckel framework. See Debye-Hückel potential for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • kappa (float) – Inverse Debye screening length.

  • r_cut (float) – Cutoff radius for this interaction.

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.electrostatics.ELC(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Electrostatics solver for systems with two periodic dimensions. See Electrostatic Layer Correction (ELC) for more details.

Parameters
  • actor (P3M, required) – Base P3M actor.

  • gap_size (float, required) – The gap size gives the height \(h\) of the empty region between the system box and the neighboring artificial images. ESPResSo checks that the gap is empty and will throw an error if it isn’t. Therefore you should really make sure that the gap region is empty (e.g. with wall constraints).

  • maxPWerror (float, required) – The maximal pairwise error sets the least upper bound (LUB) error of the force between any two charges without prefactors (see the papers). The algorithm tries to find parameters to meet this LUB requirements or will throw an error if there are none.

  • delta_mid_top (float, optional) – Dielectric contrast \(\Delta_t\) between the upper boundary and the simulation box. Value between -1 and +1 (inclusive).

  • delta_mid_bottom (float, optional) – Dielectric contrast \(\Delta_b\) between the lower boundary and the simulation box. Value between -1 and +1 (inclusive).

  • const_pot (bool, optional) – Activate a constant electric potential between the top and bottom of the simulation box.

  • pot_diff (float, optional) – If const_pot is enabled, this parameter controls the applied voltage between the boundaries of the simulation box in the z-direction (at \(z = 0\) and \(z = L_z - h\)).

  • neutralize (bool, optional) – By default, ELC just as P3M adds a homogeneous neutralizing background to the system in case of a net charge. However, unlike in three dimensions, this background adds a parabolic potential across the slab [Ballenegger et al., 2009]. Therefore, under normal circumstances, you will probably want to disable the neutralization for non-neutral systems. This corresponds then to a formal regularization of the forces and energies [Ballenegger et al., 2009]. Also, if you add neutralizing walls explicitly as constraints, you have to disable the neutralization. When using a dielectric contrast or full metallic walls (delta_mid_top != 0 or delta_mid_bot != 0 or const_pot=True), neutralize is overwritten and switched off internally. Note that the special case of non-neutral systems with a non-metallic dielectric jump (e.g. delta_mid_top or delta_mid_bot in ]-1,1[) is not covered by the algorithm and will throw an error.

  • far_cut (float, optional) – Cutoff radius, use with care, intended for testing purposes. When setting the cutoff directly, the maximal pairwise error is ignored.

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.electrostatics.ElectrostaticInteraction(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Common interface for electrostatics solvers.

Parameters

prefactor (float) – Electrostatics prefactor \(\frac{1}{4\pi\varepsilon_0\varepsilon_r}\)

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.electrostatics.MMM1D(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Electrostatics solver for systems with one periodic direction. See MMM1D for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • maxWPerror (float) – Maximal pairwise error.

  • far_switch_radius (float, optional) – Radius where near-field and far-field calculation are switched.

  • verbose (bool, optional) – If False, disable log output during tuning.

  • timings (int, optional) – Number of force calculations during tuning.

  • check_neutrality (bool, optional) – Raise a warning if the system is not electrically neutral when set to True (default).

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.electrostatics.MMM1DGPU(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Electrostatics solver with GPU support for systems with one periodic direction. See MMM1D on GPU for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • maxWPerror (float) – Maximal pairwise error.

  • far_switch_radius (float, optional) – Radius where near-field and far-field calculation are switched

  • bessel_cutoff (int, optional)

  • timings (int, optional) – Number of force calculations during tuning.

  • check_neutrality (bool, optional) – Raise a warning if the system is not electrically neutral when set to True (default).

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.electrostatics.P3M(**kwargs)[source]

Bases: espressomd.electrostatics._P3MBase

P3M electrostatics solver.

Particle–Particle–Particle–Mesh (P3M) is a Fourier-based Ewald summation method to calculate potentials in N-body simulation. See Coulomb P3M for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • accuracy (float) – P3M tunes its parameters to provide this target accuracy.

  • alpha (float, optional) – The Ewald parameter.

  • cao (float, optional) – The charge-assignment order, an integer between 1 and 7.

  • epsilon (float or str, optional) – A positive number for the dielectric constant of the surrounding medium. Use 'metallic' to set the dielectric constant of the surrounding medium to infinity (default).

  • mesh (int or (3,) array_like of int, optional) – The number of mesh points in x, y and z direction. Use a single value for cubic boxes.

  • mesh_off ((3,) array_like of float, optional) – Mesh offset.

  • r_cut (float, optional) – The real space cutoff.

  • tune (bool, optional) – Used to activate/deactivate the tuning method on activation. Defaults to True.

  • timings (int) – Number of force calculations during tuning.

  • verbose (bool, optional) – If False, disable log output during tuning.

  • check_neutrality (bool, optional) – Raise a warning if the system is not electrically neutral when set to True (default).

class espressomd.electrostatics.P3MGPU(**kwargs)[source]

Bases: espressomd.electrostatics._P3MBase

P3M electrostatics solver with GPU support.

Particle–Particle–Particle–Mesh (P3M) is a Fourier-based Ewald summation method to calculate potentials in N-body simulation. See Coulomb P3M on GPU for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • accuracy (float) – P3M tunes its parameters to provide this target accuracy.

  • alpha (float, optional) – The Ewald parameter.

  • cao (float, optional) – The charge-assignment order, an integer between 0 and 7.

  • epsilon (float or str, optional) – A positive number for the dielectric constant of the surrounding medium. Use 'metallic' to set the dielectric constant of the surrounding medium to infinity (default).

  • mesh (int or (3,) array_like of int, optional) – The number of mesh points in x, y and z direction. Use a single value for cubic boxes.

  • mesh_off ((3,) array_like of float, optional) – Mesh offset.

  • r_cut (float, optional) – The real space cutoff

  • tune (bool, optional) – Used to activate/deactivate the tuning method on activation. Defaults to True.

  • timings (int) – Number of force calculations during tuning.

  • verbose (bool, optional) – If False, disable log output during tuning.

  • check_neutrality (bool, optional) – Raise a warning if the system is not electrically neutral when set to True (default).

class espressomd.electrostatics.ReactionField(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Electrostatics solver based on the Reaction Field framework. See Reaction Field method for more details.

Parameters
  • prefactor (float) – Electrostatics prefactor (see (1)).

  • kappa (float) – Inverse Debye screening length.

  • epsilon1 (float) – interior dielectric constant

  • epsilon2 (float) – exterior dielectric constant

  • r_cut (float) – Cutoff radius for this interaction.

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.electrostatics.Scafacos(**kwargs)[source]

Bases: espressomd.electrostatics.ElectrostaticInteraction

Calculate the Coulomb interaction using the ScaFaCoS library. See ScaFaCoS electrostatics for more details.

Parameters
  • prefactor (float) – Coulomb prefactor as defined in (1).

  • method_name (str) – Name of the ScaFaCoS method to use.

  • method_params (dict) – Dictionary containing the method-specific parameters.

get_available_methods()

List long-range methods available in the ScaFaCoS library.

set_near_field_delegation()

Choose whether to delegate short-range calculation to ESPResSo (this is the default when the method supports it) or ScaFaCos.

Parameters

delegate (bool) – Delegate to ESPResSo if True and the method supports it.

get_near_field_delegation()

Find whether the short-range calculation is delegated to ESPResSo (this is the default when the method supports it) or ScaFaCos.

Returns

delegate – Delegate to ESPResSo if True and the method supports it, False if delegated to ScaFaCoS or the method doesn’t have a short-range kernel.

Return type

bool

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

espressomd.galilei module

class espressomd.galilei.GalileiTransform

Bases: object

galilei_transform(self)

Remove the center of mass velocity of the system. Assumes equal unit mass if the mass feature is not used. This is often used when switching from Langevin Dynamics to lattice-Boltzmann. This is due to the random nature of LD that yield a non-zero net system momentum at any given time.

kill_particle_forces(self, torque=False)

Set the forces on the particles to zero.

Parameters

torque (bool, optional) – Whether or not to kill the torques on all particles too.

kill_particle_motion(self, rotation=False)

Stop the motion of the particles.

Parameters

rotation (bool, optional) – Whether or not to kill the rotations too.

system_CMS(self)

Calculate the center of mass of the system. Assumes equal unit mass if the mass feature is not used.

Returns

cms – The of the center of mass position vector.

Return type

(3,) array_like of float

system_CMS_velocity(self)

Calculate the center of mass velocity of the system. Assumes equal unit mass if the mass feature is not used.

Returns

cms_vel – The of the center of mass velocity vector.

Return type

(3,) array_like of float

espressomd.highlander module

exception espressomd.highlander.ThereCanOnlyBeOne(cls)[source]

Bases: BaseException

espressomd.highlander.highlander(klass)[source]

espressomd.integrate module

class espressomd.integrate.BrownianDynamics

Bases: espressomd.integrate.Integrator

Brownian Dynamics integrator.

default_params(self)
required_keys(self)

Parameters that have to be set.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.integrate.Integrator(*args, **kwargs)

Bases: object

Integrator class.

default_params(self)

Virtual method.

get_params(self)

Get integrator parameters.

required_keys(self)

Virtual method.

run(self, steps=1, recalc_forces=False, reuse_forces=False)

Run the integrator.

Parameters
  • steps (int) – Number of time steps to integrate.

  • recalc_forces (bool, optional) – Recalculate the forces regardless of whether they are reusable.

  • reuse_forces (bool, optional) – Reuse the forces from previous time step.

valid_keys(self)

Virtual method.

validate_params(self)

Check that parameters are valid.

class espressomd.integrate.IntegratorHandle

Bases: object

Provide access to all integrators.

force_cap
get_state(self)

Return the integrator.

run(self, *args, **kwargs)

Run the integrator.

set_brownian_dynamics(self)

Set the integration method to BD.

set_isotropic_npt(self, *args, **kwargs)

Set the integration method to a modified velocity Verlet designed for simulations in the NpT ensemble (VelocityVerletIsotropicNPT).

set_nvt(self)

Set the integration method to velocity Verlet, which is suitable for simulations in the NVT ensemble (VelocityVerlet).

set_steepest_descent(self, *args, **kwargs)

Set the integration method to steepest descent (SteepestDescent).

set_stokesian_dynamics(self, *args, **kwargs)

Set the integration method to Stokesian Dynamics (StokesianDynamics).

set_vv(self)

Set the integration method to velocity Verlet, which is suitable for simulations in the NVT ensemble (VelocityVerlet).

time
time_step
class espressomd.integrate.SteepestDescent

Bases: espressomd.integrate.Integrator

Steepest descent algorithm for energy minimization.

Particles located at \(\vec{r}_i\) at integration step \(i\) and experiencing a potential \(\mathcal{H}(\vec{r}_i)\) are displaced according to the equation:

\(\vec{r}_{i+1} = \vec{r}_i - \gamma\nabla\mathcal{H}(\vec{r}_i)\)

Parameters
  • f_max (float) – Convergence criterion. Minimization stops when the maximal force on particles in the system is lower than this threshold. Set this to 0 when running minimization in a loop that stops when a custom convergence criterion is met.

  • gamma (float) – Dampening constant.

  • max_displacement (float) – Maximal allowed displacement per step. Typical values for a LJ liquid are in the range of 0.1% to 10% of the particle sigma.

default_params(self)
required_keys(self)

Parameters that have to be set.

run(self, steps=1, **kwargs)

Run the steepest descent.

Parameters

steps (int) – Maximal number of time steps to integrate.

Returns

Number of integrated steps.

Return type

int

valid_keys(self)

All parameters that can be set.

validate_params(self)
class espressomd.integrate.StokesianDynamics

Bases: espressomd.integrate.Integrator

Stokesian Dynamics integrator.

Parameters
  • viscosity (float) – Bulk viscosity.

  • radii (dict) – Dictionary that maps particle types to radii.

  • approximation_method (str, optional, {‘ft’, ‘fts’}) – Chooses the method of the mobility approximation. 'fts' is more accurate. Default is 'fts'.

  • self_mobility (bool, optional) – Switches off or on the mobility terms for single particles. Default is True.

  • pair_mobility (bool, optional) – Switches off or on the hydrodynamic interactions between particles. Default is True.

default_params(self)
required_keys(self)

Parameters that have to be set.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.integrate.VelocityVerlet

Bases: espressomd.integrate.Integrator

Velocity Verlet integrator, suitable for simulations in the NVT ensemble.

default_params(self)
required_keys(self)

Parameters that have to be set.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.integrate.VelocityVerletIsotropicNPT

Bases: espressomd.integrate.Integrator

Modified velocity Verlet integrator, suitable for simulations in the NpT ensemble with isotropic rescaling. Requires the NpT thermostat, activated with espressomd.thermostat.Thermostat.set_npt().

Parameters
  • ext_pressure (float) – The external pressure.

  • piston (float) – The mass of the applied piston.

  • direction ((3,) array_like of bool, optional) – Select which dimensions are allowed to fluctuate by assigning them to True.

  • cubic_box (bool, optional) – If True, a cubic box is assumed and the value of direction will be ignored when rescaling the box. This is required e.g. for electrostatics and magnetostatics.

default_params(self)
required_keys(self)

Parameters that have to be set.

valid_keys(self)

All parameters that can be set.

validate_params(self)

espressomd.interactions module

class espressomd.interactions.AngleCosine(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Bond-angle-dependent cosine potential.

Parameters
  • phi0 (float) – Equilibrium bond angle in radians.

  • bend (float) – Magnitude of the bond interaction.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.AngleCossquare(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Bond-angle-dependent cosine squared potential.

Parameters
  • phi0 (float) – Equilibrium bond angle in radians.

  • bend (float) – Magnitude of the bond interaction.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.AngleHarmonic(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Bond-angle-dependent harmonic potential.

Parameters
  • phi0 (float) – Equilibrium bond angle in radians.

  • bend (float) – Magnitude of the bond interaction.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.BMHTFInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the BMHTF interaction.

Parameters
  • a (float) – Magnitude of exponential part of the interaction.

  • b (float) – Exponential factor of the interaction.

  • c (float) – Magnitude of the term decaying with the sixth power of r.

  • d (float) – Magnitude of the term decaying with the eighth power of r.

  • sig (float) – Shift in the exponent.

  • cutoff (float) – Cutoff distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.BondedCoulomb(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Bonded Coulomb bond.

Parameters

prefactor (float) – Coulomb prefactor of the bonded Coulomb interaction.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)
type_number(self)
class espressomd.interactions.BondedCoulombSRBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Bonded Coulomb short range bond. Calculates the short range part of Coulomb interactions.

Parameters

q1q2 (float) – Charge factor of the involved particle pair. Note the particle charges are used to allow e.g. only partial subtraction of the involved charges.

get_default_params(self)
type_name(self)
type_number(self)
class espressomd.interactions.BondedInteraction(*args, **kwargs)

Bases: espressomd.script_interface.ScriptInterfaceHelper

Base class for bonded interactions.

Either called with an interaction id, in which case the interaction will represent the bonded interaction as it is defined in ESPResSo core, or called with keyword arguments describing a new interaction.

get_default_params(self)

Gets default values of optional parameters.

property params
required_keys(self)

Parameters that have to be set.

type_name(self)

Name of interaction type.

type_number(self)
valid_keys(self)

All parameters that can be set.

validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.BondedInteractionNotDefined(*args, **kwargs)

Bases: object

get_default_params(self)

Gets default values of optional parameters.

required_keys(self)

Parameters that have to be set.

type_name(self)

Name of interaction type.

type_number(self)
valid_keys(self)

All parameters that can be set.

class espressomd.interactions.BondedInteractions(**kwargs)

Bases: espressomd.script_interface.ScriptObjectMap

Represents the bonded interactions list.

Individual interactions can be accessed using BondedInteractions[i], where i is the bond id.

remove():

Remove a bond from the list. This is a no-op if the bond does not exist.

Parameters

bond_id (int)

clear()

Remove all bonds.

add(self, *args, **kwargs)

Add a bond to the list.

Parameters
class espressomd.interactions.BuckinghamInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Buckingham interaction.

Parameters
  • a (float) – Magnitude of the exponential part of the interaction.

  • b (float, optional) – Exponent of the exponential part of the interaction.

  • c (float) – Prefactor of term decaying with the sixth power of distance.

  • d (float) – Prefactor of term decaying with the fourth power of distance.

  • discont (float) – Distance below which the potential is linearly continued.

  • cutoff (float) – Cutoff distance of the interaction.

  • shift (float, optional) – Constant potential shift.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.DPDInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)
is_active(self)
required_keys(self)
set_params(self, **kwargs)

Set parameters for the DPD interaction.

Parameters
  • weight_function (int, {0, 1}) – The distance dependence of the parallel part, either 0 (constant) or 1 (linear)

  • gamma (float) – Friction coefficient of the parallel part

  • k (float) – Exponent in the modified weight function

  • r_cut (float) – Cutoff of the parallel part

  • trans_weight_function (int, {0, 1}) – The distance dependence of the orthogonal part, either 0 (constant) or 1 (linear)

  • trans_gamma (float) – Friction coefficient of the orthogonal part

  • trans_r_cut (float) – Cutoff of the orthogonal part

type_name(self)
valid_keys(self)
validate_params(self)

Check that parameters are valid.

class espressomd.interactions.Dihedral(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Dihedral potential with phase shift.

Parameters
  • mult (int) – Multiplicity of the potential (number of minima).

  • bend (float) – Bending constant.

  • phase (float) – Angle of the first local minimum in radians.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.FeneBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

FENE bond.

Parameters
  • k (float) – Magnitude of the bond interaction.

  • d_r_max (float) – Maximum stretch and compression length of the bond.

  • r_0 (float, optional) – Equilibrium bond length.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.GaussianInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Gaussian interaction.

Parameters
  • eps (float) – Overlap energy epsilon.

  • sig (float) – Variance sigma of the Gaussian interaction.

  • cutoff (float) – Cutoff distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.GayBerneInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Gay-Berne interaction.

Parameters
  • eps (float) – Potential well depth.

  • sig (float) – Interaction range.

  • cut (float) – Cutoff distance of the interaction.

  • k1 (float or str) – Molecular elongation.

  • k2 (float, optional) – Ratio of the potential well depths for the side-by-side and end-to-end configurations.

  • mu (float, optional) – Adjustable exponent.

  • nu (float, optional) – Adjustable exponent.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.GenericLennardJonesInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the generic Lennard-Jones interaction.

Parameters
  • epsilon (float) – Magnitude of the interaction.

  • sigma (float) – Interaction length scale.

  • cutoff (float) – Cutoff distance of the interaction.

  • shift (float or str {‘auto’}) – Constant shift of the potential. If 'auto', a default value is computed from the other parameters. The LJ potential will be shifted by \(\epsilon\cdot\text{shift}\).

  • offset (float) – Offset distance of the interaction.

  • e1 (int) – Exponent of the repulsion term.

  • e2 (int) – Exponent of the attraction term.

  • b1 (float) – Prefactor of the repulsion term.

  • b2 (float) – Prefactor of the attraction term.

  • delta (float, optional) – LJGEN_SOFTCORE parameter delta. Allows control over how smoothly the potential drops to zero as lambda approaches zero.

  • lam (float, optional) – LJGEN_SOFTCORE parameter lambda. Tune the strength of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

Raises

ValueError – If not true.

class espressomd.interactions.HarmonicBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Harmonic bond.

Parameters
  • k (float) – Magnitude of the bond interaction.

  • r_0 (float) – Equilibrium bond length.

  • r_cut (float, optional) – Maximum distance beyond which the bond is considered broken.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.HatInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)
is_active(self)
required_keys(self)
set_params(self, **kwargs)

Set parameters for the Hat interaction.

Parameters
  • F_max (float) – Magnitude of the interaction.

  • cutoff (float) – Cutoff distance of the interaction.

type_name(self)
valid_keys(self)
validate_params(self)
class espressomd.interactions.HertzianInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Hertzian interaction.

Parameters
  • eps (float) – Magnitude of the interaction.

  • sig (float) – Parameter sigma. Determines the length over which the potential decays.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.IBM_Tribend(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

IBM Tribend bond.

See Figure C.2 in [Krüger, 2012].

Parameters
  • ind1, ind2, ind3, ind4 (int) – First, second, third and fourth bonding partner. Used for initializing reference state

  • kb (float) – Bending modulus

  • refShape (str, optional, {‘Flat’, ‘Initial’}) – Reference shape, default is 'Flat'

get_default_params(self)

Gets default values of optional parameters.

type_name(self)
type_number(self)
valid_keys(self)
validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.IBM_Triel(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

IBM Triel bond.

See Figure C.1 in [Krüger, 2012].

Parameters
  • ind1, ind2, ind3 (int) – First, second and third bonding partner. Used for initializing reference state

  • k1 (float) – Shear elasticity for Skalak and Neo-Hookean

  • k2 (float, optional) – Area resistance for Skalak

  • maxDist (float) – Gives an error if an edge becomes longer than maxDist

  • elasticLaw (str, {‘NeoHookean’, ‘Skalak’}) – Type of elastic bond

get_default_params(self)

Gets default values of optional parameters.

type_name(self)
type_number(self)
valid_keys(self)
validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.IBM_VolCons(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

IBM volume conservation bond.

See Figure C.3 in [Krüger, 2012].

Parameters
  • softID (int) – Used to identify the object to which this bond belongs. Each object (cell) needs its own ID. For performance reasons, it is best to start from softID=0 and increment by 1 for each subsequent bond.

  • kappaV (float) – Modulus for volume force

current_volume(self)

Query the current volume of the soft object associated to this bond. The volume is initialized once all IBM_Triel bonds have been added and the forces have been recalculated.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)
type_number(self)
class espressomd.interactions.LennardJonesCos2Interaction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)
is_active(self)
required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Lennard-Jones cosine squared interaction.

Parameters
  • epsilon (float) – Magnitude of the interaction.

  • sigma (float) – Interaction length scale.

  • offset (float, optional) – Offset distance of the interaction.

  • width (float) – Width of interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)
class espressomd.interactions.LennardJonesCosInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)
is_active(self)
required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Lennard-Jones cosine interaction.

Parameters
  • epsilon (float) – Magnitude of the interaction.

  • sigma (float) – Interaction length scale.

  • cutoff (float) – Cutoff distance of the interaction.

  • offset (float, optional) – Offset distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)
class espressomd.interactions.LennardJonesInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Lennard-Jones interaction.

Parameters
  • epsilon (float) – Magnitude of the interaction.

  • sigma (float) – Interaction length scale.

  • cutoff (float) – Cutoff distance of the interaction.

  • shift (float or str {‘auto’}) – Constant shift of the potential. If 'auto', a default value is computed from sigma and cutoff. The LJ potential will be shifted by \(4\epsilon\cdot\text{shift}\).

  • offset (float, optional) – Offset distance of the interaction.

  • min (float, optional) – Restricts the interaction to a minimal distance.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

Raises

ValueError – If not true.

class espressomd.interactions.MorseInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Morse interaction.

Parameters
  • eps (float) – The magnitude of the interaction.

  • alpha (float) – Stiffness of the Morse interaction.

  • rmin (float) – Distance of potential minimum

  • cutoff (float, optional) – Cutoff distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.NonBondedInteraction(*args, **kwargs)

Bases: object

Represents an instance of a non-bonded interaction, such as Lennard-Jones. Either called with two particle type id, in which case, the interaction will represent the bonded interaction as it is defined in ESPResSo core, or called with keyword arguments describing a new interaction.

default_params(self)

Virtual method.

get_params(self)

Get interaction parameters.

is_active(self)

Virtual method.

is_valid(self)

Check, if the data stored in the instance still matches what is in ESPResSo.

required_keys(self)

Virtual method.

set_params(self, **p)

Update the given parameters.

type_name(self)

Virtual method.

user_interactions

object

Type

user_interactions

valid_keys(self)

Virtual method.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.NonBondedInteractionHandle(_type1, _type2)

Bases: object

Provides access to all non-bonded interactions between two particle types.

bmhtf = None
buckingham = None
dpd = None
gaussian = None
gay_berne = None
generic_lennard_jones = None
hat = None
hertzian = None
lennard_jones = None
lennard_jones_cos = None
lennard_jones_cos2 = None
morse = None
smooth_step = None
soft_sphere = None
tabulated = None
thole = None
type1 = -1
type2 = -1
class espressomd.interactions.NonBondedInteractions

Bases: object

Access to non-bonded interaction parameters via [i,j], where i, j are particle types. Returns a NonBondedInteractionHandle object. Also: access to force capping.

reset(self)

Reset all interaction parameters to their default values.

class espressomd.interactions.OifGlobalForces(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Characterize the distribution of the force of the global mesh deformation onto individual vertices of the mesh.

Part of the Object-in-fluid method.

Parameters
  • A0_g (float) – Relaxed area of the mesh

  • ka_g (float) – Area coefficient

  • V0 (float) – Relaxed volume of the mesh

  • kv (float) – Volume coefficient

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.OifLocalForces(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Characterize the deformation of two triangles sharing an edge.

Part of the Object-in-fluid method.

Parameters
  • r0 (float) – Equilibrium bond length of triangle edges

  • ks (float) – Non-linear stretching coefficient of triangle edges

  • kslin (float) – Linear stretching coefficient of triangle edges

  • phi0 (float) – Equilibrium angle between the two triangles

  • kb (float) – Bending coefficient for the angle between the two triangles

  • A01 (float) – Equilibrium surface of the first triangle

  • A02 (float) – Equilibrium surface of the second triangle

  • kal (float) – Stretching coefficient of a triangle surface

  • kvisc (float) – Viscous coefficient of the triangle vertices

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.QuarticBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Quartic bond.

Parameters
  • k0 (float) – Magnitude of the square term.

  • k1 (float) – Magnitude of the fourth order term.

  • r (float) – Equilibrium bond length.

  • r_cut (float) – Maximum interaction length.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.RigidBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Rigid bond.

Parameters
  • r (float) – Bond length.

  • ptol (float, optional) – Tolerance for positional deviations.

  • vtop (float, optional) – Tolerance for velocity deviations.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.SmoothStepInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the smooth-step interaction.

Parameters
  • d (float) – Short range repulsion parameter.

  • n (int, optional) – Exponent of short range repulsion.

  • eps (float) – Magnitude of the second (soft) repulsion.

  • k0 (float, optional) – Exponential factor in second (soft) repulsion.

  • sig (float, optional) – Length scale of second (soft) repulsion.

  • cutoff (float) – Cutoff distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.SoftSphereInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the Soft-sphere interaction.

Parameters
  • a (float) – Magnitude of the interaction.

  • n (float) – Exponent of the power law.

  • cutoff (float) – Cutoff distance of the interaction.

  • offset (float, optional) – Offset distance of the interaction.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

class espressomd.interactions.TabulatedAngle(*args, **kwargs)

Bases: espressomd.interactions._TabulatedBase

Tabulated bond angle.

Parameters
  • energy (array_like of float) – The energy table for the range \(0-\pi\).

  • force (array_like of float) – The force table for the range \(0-\pi\).

pi = 3.14159265358979
type_name(self)

Name of interaction type.

type_number(self)
validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.TabulatedDihedral(*args, **kwargs)

Bases: espressomd.interactions._TabulatedBase

Tabulated bond dihedral.

Parameters
  • energy (array_like of float) – The energy table for the range \(0-2\pi\).

  • force (array_like of float) – The force table for the range \(0-2\pi\).

pi = 3.14159265358979
type_name(self)

Name of interaction type.

type_number(self)
validate_params(self, params)

Check that parameters are valid.

class espressomd.interactions.TabulatedDistance(*args, **kwargs)

Bases: espressomd.interactions._TabulatedBase

Tabulated bond length.

Parameters
  • min (float) – The minimal interaction distance.

  • max (float) – The maximal interaction distance.

  • energy (array_like of float) – The energy table.

  • force (array_like of float) – The force table.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.TabulatedNonBonded(*args, **kwargs)

Bases: espressomd.interactions.NonBondedInteraction

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_default_params(self)

Set parameters that are not required to their default value.

set_params(self, **kwargs)

Set parameters for the TabulatedNonBonded interaction.

Parameters
  • min (float,) – The minimal interaction distance.

  • max (float,) – The maximal interaction distance.

  • energy (array_like of float) – The energy table.

  • force (array_like of float) – The force table.

type_name(self)

Name of the potential.

type_number(self)
valid_keys(self)

All parameters that can be set.

class espressomd.interactions.ThermalizedBond(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Thermalized bond.

Parameters
  • temp_com (float) – Temperature of the Langevin thermostat for the center of mass of the particle pair.

  • gamma_com (float) – Friction coefficient of the Langevin thermostat for the center of mass of the particle pair.

  • temp_distance (float) – Temperature of the Langevin thermostat for the distance vector of the particle pair.

  • gamma_distance (float) – Friction coefficient of the Langevin thermostat for the distance vector of the particle pair.

  • r_cut (float, optional) – Maximum distance beyond which the bond is considered broken.

  • seed (int) – Initial counter value (or seed) of the philox RNG. Required on the first thermalized bond in the system. Must be positive. If prompted, it does not return the initially set counter value (the seed) but the current state of the RNG.

get_default_params(self)
type_name(self)
type_number(self)
validate_params(self, params)
class espressomd.interactions.Virtual(*args, **kwargs)

Bases: espressomd.interactions.BondedInteraction

Virtual bond.

get_default_params(self)

Gets default values of optional parameters.

type_name(self)

Name of interaction type.

type_number(self)
class espressomd.interactions.WCAInteraction

Bases: espressomd.interactions.NonBondedInteraction

default_params(self)

Python dictionary of default parameters.

is_active(self)

Check if interaction is active.

required_keys(self)

Parameters that have to be set.

set_params(self, **kwargs)

Set parameters for the WCA interaction.

Parameters
  • epsilon (float) – Magnitude of the interaction.

  • sigma (float) – Interaction length scale.

type_name(self)

Name of interaction type.

valid_keys(self)

All parameters that can be set.

validate_params(self)

Check that parameters are valid.

Raises

ValueError – If not true.

espressomd.interactions.get_bonded_interaction_type_from_es_core(bond_id)

espressomd.lb module

class espressomd.lb.FluidActor(*args, **kwargs)

Bases: object

Abstract base class for interactions affecting particles in the system, such as LB fluids. Derived classes must implement the interface to the relevant core objects and global variables.

active_list = {'HydrodynamicInteraction': False}
class_lookup(self, cls)
default_params(self)

Virtual method.

get_params(self)

Get interaction parameters

is_active(self)
is_valid(self)

Check if the data stored in this instance still matches the corresponding data in the core.

required_keys(self)

Virtual method.

set_params(self, **p)

Update the given parameters.

system

object

Type

system

valid_keys(self)

Virtual method.

validate_params(self)

Virtual method.

class espressomd.lb.HydrodynamicInteraction

Bases: espressomd.lb.FluidActor

Base class for LB implementations.

Parameters
  • agrid (float) – Lattice constant. The box size in every direction must be an integer multiple of agrid.

  • tau (float) – LB time step, must be an integer multiple of the MD time step.

  • dens (float) – Fluid density.

  • visc (float) – Fluid kinematic viscosity.

  • bulk_visc (float, optional) – Fluid bulk viscosity.

  • gamma_odd (int, optional) – Relaxation parameter \(\gamma_{\textrm{odd}}\) for kinetic modes.

  • gamma_even (int, optional) – Relaxation parameter \(\gamma_{\textrm{even}}\) for kinetic modes.

  • ext_force_density ((3,) array_like of float, optional) – Force density applied on the fluid.

  • kT (float, optional) – Thermal energy of the simulated heat bath (for thermalized fluids). Set it to 0 for an unthermalized fluid.

  • seed (int, optional) – Initial counter value (or seed) of the philox RNG. Required for a thermalized fluid. Must be positive.

agrid
bulk_viscosity
default_params(self)
density
ext_force_density
get_interpolated_velocity(self, pos)

Get LB fluid velocity at specified position.

Parameters

pos ((3,) array_like of float) – The position at which velocity is requested.

Returns

v – The LB fluid velocity at pos.

Return type

(3,) array_like float

kT
load_checkpoint(self, path, binary)

Load LB node populations from a file. LBBoundaries information is not available in the file. The boundary information of the grid will be set to zero, even if LBBoundaries contains LBBoundary objects (they are ignored).

nodes(self)

Provides a generator for iterating over all lb nodes

pressure_tensor
required_keys(self)
save_checkpoint(self, path, binary)

Write LB node populations to a file. LBBoundaries information is not written to the file.

seed
set_interpolation_order(self, interpolation_order)

Set the order for the fluid interpolation scheme.

Parameters

interpolation_order (str, {“linear”, “quadratic”}) – "linear" for trilinear interpolation, "quadratic" for quadratic interpolation. For the CPU implementation of LB, only "linear" is available.

shape
tau
valid_keys(self)
validate_params(self)
viscosity
write_boundary(self, path)

Write the LB boundaries to a data file that can be loaded by numpy, with format “x y z u”.

Parameters

path (str) – Path to the output data file.

write_velocity(self, path)

Write the LB fluid velocity to a data file that can be loaded by numpy, with format “x y z vx vy vz”.

Parameters

path (str) – Path to the output data file.

write_vtk_boundary(self, path)

Write the LB boundaries to a VTK file.

Parameters

path (str) – Path to the output ASCII file.

write_vtk_velocity(self, path, bb1=None, bb2=None)

Write the LB fluid velocity to a VTK file. If both bb1 and bb2 are specified, return a subset of the grid.

Parameters
  • path (str) – Path to the output ASCII file.

  • bb1 ((3,) array_like of int, optional) – Node indices of the lower corner of the bounding box.

  • bb2 ((3,) array_like of int, optional) – Node indices of the upper corner of the bounding box.

class espressomd.lb.LBFluid

Bases: espressomd.lb.HydrodynamicInteraction

Initialize the lattice-Boltzmann method for hydrodynamic flow using the CPU. See HydrodynamicInteraction for the list of parameters.

class espressomd.lb.LBFluidGPU

Bases: espressomd.lb.HydrodynamicInteraction

Initialize the lattice-Boltzmann method for hydrodynamic flow using the GPU. See HydrodynamicInteraction for the list of parameters.

get_interpolated_fluid_velocity_at_positions(self, ndarray positions, three_point=False)

Calculate the fluid velocity at given positions.

Parameters

positions ((N,3) numpy-array of type float) – The 3-dimensional positions.

Returns

velocities – The 3-dimensional LB fluid velocities.

Return type

(N,3) numpy-array of type float

Raises

AssertionError – If shape of positions not (N,3).

class espressomd.lb.LBFluidRoutines(key)

Bases: object

boundary
density
index
population
pressure_tensor
pressure_tensor_neq
velocity
class espressomd.lb.LBSlice(key, shape)

Bases: object

property boundary

boundary for a slice

property density

density for a slice

get_indices(self, key, shape_x, shape_y, shape_z)
get_values(self, x_indices, y_indices, z_indices, prop_name)
property index

index for a slice

property population

population for a slice

property pressure_tensor

pressure_tensor for a slice

property pressure_tensor_neq

pressure_tensor_neq for a slice

set_values(self, x_indices, y_indices, z_indices, prop_name, value)
property velocity

velocity for a slice

espressomd.lbboundaries module

class espressomd.lbboundaries.LBBoundaries(**kwargs)[source]

Bases: espressomd.script_interface.ScriptObjectList

Creates a set of lattice-Boltzmann boundaries.

size()

Get the number of active boundaries.

empty()

Return True if there are not active boundaries.

clear()

Clear the list of boundaries.

add(*args, **kwargs)[source]

Adds a boundary to the set of boundaries. Either pass a valid boundary as argument, or a valid set of parameters to create a boundary.

remove(lbboundary)[source]

Removes a boundary from the set.

Parameters

lbboundary (LBBoundary) – The boundary to be removed from the set.

class espressomd.lbboundaries.LBBoundary(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Creates a LB boundary from a shape.

The fluid velocity is limited to \(v_{\mathrm{max}} = 0.20\) (see quasi-incompressible limit in [Krüger et al., 2017], chapter 7, page 272), which corresponds to Mach 0.35.

The relative error in the fluid density between a compressible fluid and an incompressible fluid at Mach 0.30 is less than 5% (see constant density assumption in [Kundu et al., 2001] chapter 16, page 663). Since the speed of sound is \(c_s = 1 / \sqrt{3}\) in LB velocity units in a D3Q19 lattice, the velocity limit at Mach 0.30 is \(v_{\mathrm{max}} = 0.30 / \sqrt{3} \approx 0.17\). At Mach 0.35 the relative error is around 6% and \(v_{\mathrm{max}} = 0.35 / \sqrt{3} \approx 0.20\).

Parameters
  • shape (espressomd.shapes.Shape) – The shape from which to build the boundary.

  • velocity ((3,) array_like of float, optional) – The boundary slip velocity. By default, a velocity of zero is used (no-slip boundary condition).

espressomd.lees_edwards module

class espressomd.lees_edwards.LeesEdwards(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Interface to the Lees–Edwards boundary conditions. When writing H5MD files, the shear direction and shear plane normals are written as integers instead of characters, with 0 = x-axis, 1 = y-axis, 2 = z-axis.

protocol

Lees–Edwards protocol.

Type

object

shear_velocity

Current shear velocity.

Type

float

pos_offset

Current position offset

Type

float

shear_direction

Shear direction.

Type

str, {‘x’, ‘y’, ‘z’}

shear_plane_normal

Shear plane normal.

Type

str, {‘x’, ‘y’, ‘z’}

set_boundary_conditions()

Set a protocol, the shear direction and shear normal.

Parameters
  • protocol (object)

  • shear_direction (str, {‘x’, ‘y’, ‘z’})

  • shear_plane_normal (str, {‘x’, ‘y’, ‘z’})

class espressomd.lees_edwards.LinearShear(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Lees–Edwards protocol for linear shear.

Parameters
  • initial_pos_offset (float) – Positional offset at the Lees–Edwards boundary at t=0.

  • shear_velocity (float) – Shear velocity (velocity jump) across the Lees–Edwards boundary.

class espressomd.lees_edwards.Off(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Lees–Edwards protocol resulting in un-shifted boundaries.

class espressomd.lees_edwards.OscillatoryShear(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Lees–Edwards protocol for oscillatory shear.

Parameters
  • initial_pos_offset (float) – Positional offset at the Lees–Edwards boundary at t=0.

  • amplitude (float) – Maximum amplitude of the positional offset at the Lees–Edwards boundary.

  • omega (float) – Radian frequency of the oscillation.

  • time_0 (float) – Time offset of the oscillation.

espressomd.magnetostatics module

class espressomd.magnetostatics.DLC(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Electrostatics solver for systems with two periodic dimensions. See Dipolar Layer Correction (DLC) for more details.

Notes

At present, the empty gap (volume without any particles), is assumed to be along the z-axis. As a reference for the DLC method, see [Bródka, 2004].

Parameters
  • gap_size (float) – The gap size gives the height \(h\) of the empty region between the system box and the neighboring artificial images. ESPResSo checks that the gap is empty and will throw an error if it isn’t. Therefore you should really make sure that the gap region is empty (e.g. with wall constraints).

  • maxPWerror (float) – Maximal pairwise error of the potential and force.

  • far_cut (float, optional) – Cutoff of the exponential sum.

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.magnetostatics.DipolarBarnesHutGpu(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculates magnetostatic interactions by direct summation over all pairs. See Barnes-Hut octree sum on GPU for more details.

TODO: If the system has periodic boundaries, the minimum image convention is applied.

Requires feature DIPOLAR_BARNES_HUT, which depends on DIPOLES and CUDA.

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.magnetostatics.DipolarDirectSumCpu(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculate magnetostatic interactions by direct summation over all pairs. See Dipolar direct sum for more details.

If the system has periodic boundaries, the minimum image convention is applied in the respective directions.

Parameters

prefactor (float) – Magnetostatics prefactor (\(\mu_0/(4\pi)\))

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.magnetostatics.DipolarDirectSumGpu(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculate magnetostatic interactions by direct summation over all pairs. See Dipolar direct sum for more details.

If the system has periodic boundaries, the minimum image convention is applied in the respective directions.

This is the GPU version of espressomd.magnetostatics.DipolarDirectSumCpu but uses floating point precision.

Requires feature DIPOLAR_DIRECT_SUM, which depends on DIPOLES and CUDA.

Parameters

prefactor (float) – Magnetostatics prefactor (\(\mu_0/(4\pi)\))

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.magnetostatics.DipolarDirectSumWithReplicaCpu(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculate magnetostatic interactions by direct summation over all pairs. See Dipolar direct sum for more details.

If the system has periodic boundaries, n_replica copies of the system are taken into account in the respective directions. Spherical cutoff is applied.

Parameters
  • prefactor (float) – Magnetostatics prefactor (\(\mu_0/(4\pi)\))

  • n_replica (int) – Number of replicas to be taken into account at periodic boundaries.

default_params()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.magnetostatics.DipolarP3M(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculate magnetostatic interactions using the dipolar P3M method. See Dipolar P3M for more details.

Parameters
  • prefactor (float) – Magnetostatics prefactor (\(\mu_0/(4\pi)\))

  • accuracy (float) – P3M tunes its parameters to provide this target accuracy.

  • alpha (float) – Ewald parameter.

  • cao (int) – Charge-assignment order, an integer between 1 and 7.

  • mesh (int or (3,) array_like of int) – The number of mesh points in x, y and z direction. Use a single value for cubic boxes.

  • mesh_off ((3,) array_like of float, optional) – Mesh offset.

  • r_cut (float) – Real space cutoff.

  • tune (bool, optional) – Activate/deactivate the tuning method on activation (default is True, i.e., activated).

  • timings (int) – Number of force calculations during tuning.

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of parameters.

class espressomd.magnetostatics.MagnetostaticInteraction(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Common interface for magnetostatics solvers.

Parameters

prefactor (float) – Magnetostatics prefactor \(\frac{\mu_0\mu}{4\pi}\)

default_params()[source]
get_magnetostatics_prefactor()[source]

Get the magnetostatics prefactor

required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

class espressomd.magnetostatics.Scafacos(**kwargs)[source]

Bases: espressomd.magnetostatics.MagnetostaticInteraction

Calculate the dipolar interaction using dipoles-capable methods from the ScaFaCoS library. See ScaFaCoS magnetostatics for more details.

Parameters
  • prefactor (float) – Magnetostatics prefactor (\(\mu_0/(4\pi)\)).

  • method_name (str) – Name of the ScaFaCoS method to use.

  • method_params (dict) – Dictionary with the key-value pairs of the method parameters as defined in ScaFaCoS. Note that the values are cast to strings to match ScaFaCoS’ interface.

get_available_methods()

List long-range methods available in the ScaFaCoS library.

default_params()[source]
required_keys()[source]
valid_keys()[source]
validate_params(params)[source]

Check validity of given parameters.

espressomd.math module

class espressomd.math.CylindricalTransformationParameters(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Class to hold and validate the parameters needed for a cylindrical transformation. The three parameters are available as attributes but are read-only.

Parameters
  • center ((3,) array_like of float, default = [0, 0, 0]) – Position of the origin of the cylindrical coordinate system.

  • axis ((3,) array_like of float, default = [0, 0, 1]) – Orientation vector of the z-axis of the cylindrical coordinate system.

  • orientation ((3,) array_like of float, default = [1, 0, 0]) – The axis on which phi = 0.

Notes

If you provide no arguments, the defaults above are set. If you provide only a center and an axis, an orientation will be automatically generated that is orthogonal to axis.

espressomd.observables module

class espressomd.observables.BondAngles(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the angles between bonds of particles with given ids along a polymer chain.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N - 2,) ndarray of float

class espressomd.observables.BondDihedrals(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the dihedrals between particles with given ids along a polymer chain.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N - 3,) ndarray of float

class espressomd.observables.ComPosition(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the center of mass for particles with given ids.

Note that virtual sites are not included since they do not have a meaningful mass.

Output format: \(\frac{1}{\sum_i m_i} \left( \sum_i m_i r^x_i, \sum_i m_i r^y_i, \sum_i m_i r^z_i\right)\)

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(3,) ndarray of float

class espressomd.observables.ComVelocity(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the center of mass velocity for particles with given ids.

Note that virtual sites are not included since they do not have a meaningful mass.

Output format: \(\frac{1}{\sum_i m_i} \left( \sum_i m_i v^x_i, \sum_i m_i v^y_i, \sum_i m_i v^z_i\right)\)

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(3,) ndarray of float

class espressomd.observables.CosPersistenceAngles(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the cosine of mutual bond angles for chained particles with given ids.

The i-th value of the result contains the cosine of the angle between bonds that are separated by i bonds. The values are averaged over the chain.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N - 2,) ndarray of float

class espressomd.observables.CylindricalDensityProfile(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the particle density in cylindrical coordinates.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

Return type

(n_r_bins, n_phi_bins, n_z_bins) ndarray of float

class espressomd.observables.CylindricalFluxDensityProfile(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the particle flux density in cylindrical coordinates.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the radial distance, azimuth and axial coordinate of the particle flux density field, respectively.

Return type

(n_r_bins, n_phi_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.CylindricalLBFluxDensityProfileAtParticlePositions(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the LB fluid flux density at the particle positions in cylindrical coordinates.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the radial distance, azimuth and axial coordinate of the LB flux density field, respectively.

Return type

(n_r_bins, n_phi_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.CylindricalLBVelocityProfile(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the LB fluid velocity profile in cylindrical coordinates.

This observable samples the fluid in on a regular grid defined by variable sampling_density. Note that a small delta leads to a large number of sample points and carries a performance cost.

Parameters
  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

  • sampling_density (float) – Samples per unit volume for the LB velocity interpolation.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the radial distance, azimuth and axial coordinate of the LB velocity field, respectively.

Return type

(n_r_bins, n_phi_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.CylindricalLBVelocityProfileAtParticlePositions(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the LB fluid velocity at the particle positions in cylindrical coordinates.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the radial distance, azimuth and axial coordinate of the LB velocity field, respectively.

Return type

(n_r_bins, n_phi_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.CylindricalProfileObservable(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.ProfileObservable

Base class for observables that work with cylinder coordinates

class espressomd.observables.CylindricalVelocityProfile(transform_params=<espressomd.math.CylindricalTransformationParameters object>, **kwargs)[source]

Bases: espressomd.observables.CylindricalProfileObservable

Calculates the particle velocity profile in cylindrical coordinates.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • transform_params (espressomd.math.CylindricalTransformationParameters, optional) – Parameters of the cylinder transformation. Defaults to the default of espressomd.math.CylindricalTransformationParameters

  • n_r_bins (int, default = 1) – Number of bins in radial direction.

  • n_phi_bins (int, default = 1) – Number of bins for the azimuthal direction.

  • n_z_bins (int, default = 1) – Number of bins in z direction.

  • min_r (float, default = 0) – Minimum r to consider.

  • min_phi (float, default = \(-\pi\)) – Minimum phi to consider. Must be in \([-\pi,\pi)\).

  • min_z (float) – Minimum z to consider.

  • max_r (float) – Maximum r to consider.

  • max_phi (float, default = \(\pi\)) – Maximum phi to consider. Must be in \((-\pi,\pi]\).

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the radial distance, azimuth and axial coordinate of the particle velocity field, respectively.

Return type

(n_r_bins, n_phi_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.DPDStress(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the non-equilibrium contribution of the DPD interaction to the stress tensor.

Parameters

None

calculate()

Run the observable.

Returns

Return type

(3, 3) ndarray of float

class espressomd.observables.DensityProfile(**kwargs)[source]

Bases: espressomd.observables.ProfileObservable

Calculates the particle density profile for particles with given ids.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • n_x_bins (int) – Number of bins in x direction.

  • n_y_bins (int) – Number of bins in y direction.

  • n_z_bins (int) – Number of bins in z direction.

  • min_x (float) – Minimum x to consider.

  • min_y (float) – Minimum y to consider.

  • min_z (float) – Minimum z to consider.

  • max_x (float) – Maximum x to consider.

  • max_y (float) – Maximum y to consider.

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

Return type

(n_x_bins, n_y_bins, n_z_bins) ndarray of float

class espressomd.observables.DipoleMoment(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the electric dipole moment for particles with given ids.

Output format: \(\left(\sum_i q_i r^x_i, \sum_i q_i r^y_i, \sum_i q_i r^z_i\right)\)

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(3,) ndarray of float

class espressomd.observables.Energy(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the total energy.

calculate()

Run the observable.

Returns

Return type

float

class espressomd.observables.FluxDensityProfile(**kwargs)[source]

Bases: espressomd.observables.ProfileObservable

Calculates the particle flux density for particles with given ids.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • n_x_bins (int) – Number of bins in x direction.

  • n_y_bins (int) – Number of bins in y direction.

  • n_z_bins (int) – Number of bins in z direction.

  • min_x (float) – Minimum x to consider.

  • min_y (float) – Minimum y to consider.

  • min_z (float) – Minimum z to consider.

  • max_x (float) – Maximum x to consider.

  • max_y (float) – Maximum y to consider.

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the x, y and z components of the flux density, respectively.

Return type

(n_x_bins, n_y_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.ForceDensityProfile(**kwargs)[source]

Bases: espressomd.observables.ProfileObservable

Calculates the force density profile for particles with given ids.

Parameters
  • ids (array_like of int) – The ids of (existing) particles to take into account.

  • n_x_bins (int) – Number of bins in x direction.

  • n_y_bins (int) – Number of bins in y direction.

  • n_z_bins (int) – Number of bins in z direction.

  • min_x (float) – Minimum x to consider.

  • min_y (float) – Minimum y to consider.

  • min_z (float) – Minimum z to consider.

  • max_x (float) – Maximum x to consider.

  • max_y (float) – Maximum y to consider.

  • max_z (float) – Maximum z to consider.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the x, y and z components of the force, respectively.

Return type

(n_x_bins, n_y_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.LBFluidPressureTensor(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the average pressure tensor of the LB fluid for all nodes.

Parameters

None

calculate()

Run the observable.

Returns

Return type

(3, 3) ndarray of float

class espressomd.observables.LBVelocityProfile(**kwargs)[source]

Bases: espressomd.observables.ProfileObservable

Calculates the LB fluid velocity profile.

This observable samples the fluid in on a regular grid defined by the variables sampling_*. Note that a small delta leads to a large number of sample points and carries a performance cost.

Parameters
  • n_x_bins (int) – Number of bins in x direction.

  • n_y_bins (int) – Number of bins in y direction.

  • n_z_bins (int) – Number of bins in z direction.

  • min_x (float) – Minimum x to consider.

  • min_y (float) – Minimum y to consider.

  • min_z (float) – Minimum z to consider.

  • max_x (float) – Maximum x to consider.

  • max_y (float) – Maximum y to consider.

  • max_z (float) – Maximum z to consider.

  • sampling_delta_x (float, default=1.0) – Spacing for the sampling grid in x-direction.

  • sampling_delta_y (float, default=1.0) – Spacing for the sampling grid in y-direction.

  • sampling_delta_z (float, default=1.0) – Spacing for the sampling grid in z-direction.

  • sampling_offset_x (float, default=0.0) – Offset for the sampling grid in x-direction.

  • sampling_offset_y (float, default=0.0) – Offset for the sampling grid in y-direction.

  • sampling_offset_z (float, default=0.0) – Offset for the sampling grid in z-direction.

  • allow_empty_bins (bool, default=False) – Whether or not to allow bins that will not be sampled at all.

calculate()

Run the observable.

Returns

The fourth dimension of the array stores the histogram for the x, y and z components of the LB velocity, respectively.

Return type

(n_x_bins, n_y_bins, n_z_bins, 3) ndarray of float

class espressomd.observables.MagneticDipoleMoment(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the magnetic dipole moment for particles with given ids.

Output format: \(\left(\sum_i \mu^x_i, \sum_i \mu^y_i, \sum_i \mu^z_i\right)\)

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(3,) ndarray of float

class espressomd.observables.Observable(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Base class for all observables.

shape()

Get the shape of the numpy array returned by the observable.

calculate()[source]
class espressomd.observables.ParticleAngularVelocities(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the angular velocity (omega) in the spaced-fixed frame of reference

Output format: \((\omega^x_1,\ \omega^y_1,\ \omega^z_1),\ (\omega^x_2,\ \omega^y_2,\ \omega^z_2), \dots,\ (\omega^x_n,\ \omega^y_n,\ \omega^z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.ParticleBodyAngularVelocities(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the angular velocity (omega) in the particles’ body-fixed frame of reference.

For each particle, the body-fixed frame of reference is obtained from the particle’s orientation stored in the quaternions.

Output format: \((\omega^x_1,\ \omega^y_1,\ \omega^z_1),\ (\omega^x_2,\ \omega^y_2,\ \omega^z_2), \dots,\ (\omega^x_n,\ \omega^y_n,\ \omega^z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.ParticleBodyVelocities(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the particle velocity in the particles’ body-fixed frame of reference.

For each particle, the body-fixed frame of reference is obtained from the particle’s orientation stored in the quaternions.

Output format: \((v^x_1,\ v^y_1,\ v^z_1),\ (v^x_2,\ v^y_2,\ v^z_2),\ \dots,\ (v^x_n,\ v^y_n,\ v^z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.ParticleDistances(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the distances between particles with given ids along a polymer chain.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N - 1,) ndarray of float

class espressomd.observables.ParticleForces(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the particle forces for particles with given ids.

Output format: \((f^x_1,\ f^y_1,\ f^z_1),\ (f^x_2,\ f^y_2,\ f^z_2),\ \dots,\ (f^x_n,\ f^y_n,\ f^z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.ParticlePositions(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the particle positions for particles with given ids.

Output format: \((x_1,\ y_1,\ z_1),\ (x_2,\ y_2,\ z_2),\ \dots,\ (x_n,\ y_n,\ z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.ParticleVelocities(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the particle velocities for particles with given ids.

Output format: \((v^x_1,\ v^y_1,\ v^z_1),\ (v^x_2,\ v^y_2,\ v^z_2),\ \dots,\ (v^x_n,\ v^y_n,\ v^z_n)\).

The particles are ordered according to the list of ids passed to the observable.

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(N, 3) ndarray of float

class espressomd.observables.Pressure(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the total scalar pressure.

calculate()

Run the observable.

Returns

Return type

float

class espressomd.observables.PressureTensor(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the total pressure tensor.

calculate()

Run the observable.

Returns

Return type

(3, 3) ndarray of float

class espressomd.observables.ProfileObservable(**kwargs)[source]

Bases: espressomd.observables.Observable

Base class for histogram-based observables.

bin_centers()[source]
Returns

Positions of the bins centers. If the histogram has dimensions (M,N,O), the bin centers have dimensions (M,N,O,3).

Return type

ndarray of float

bin_edges()[source]
Returns

Positions between the bins. If the histogram has dimensions (M,N,O), the bin edges have dimensions (M+1,N+1,O+1,3).

Return type

ndarray of float

class espressomd.observables.RDF(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates a radial distribution function. The result is normalized by the bulk concentration.

Parameters
  • ids1 (array_like of int) – The ids of (existing) particles to calculate the distance from.

  • ids2 (array_like of int, optional) – The ids of (existing) particles to calculate the distance to. If not provided, use ids1.

  • n_r_bins (int) – Number of bins in radial direction.

  • min_r (float) – Minimum r to consider.

  • max_r (float) – Maximum r to consider.

calculate()

Run the observable.

Returns

The RDF.

Return type

(n_r_bins,) ndarray of float

bin_centers()[source]
class espressomd.observables.TotalForce(**kwargs)[source]

Bases: espressomd.observables.Observable

Calculates the total force on particles with given ids.

Note that virtual sites are not included since forces on them do not enter the equation of motion directly.

Output format: \(\left(\sum_i f^x_i, \sum_i f^y_i, \sum_i f^z_i\right)\)

Parameters

ids (array_like of int) – The ids of (existing) particles to take into account.

calculate()

Run the observable.

Returns

Return type

(3,) ndarray of float

espressomd.pair_criteria module

class espressomd.pair_criteria.BondCriterion(**kwargs)[source]

Bases: espressomd.pair_criteria._PairCriterion

Pair criterion returning true, if a pair bond of given type exists between them

The following parameters can be passed to the constructor, changed via set_params() and retrieved via get_params().

Parameters

bond_type (int) – numeric type of the bond

class espressomd.pair_criteria.DistanceCriterion(**kwargs)[source]

Bases: espressomd.pair_criteria._PairCriterion

Pair criterion returning true, if particles are closer than a cutoff. Periodic boundaries are treated via minimum image convention.

The following parameters can be passed to the constructor, changed via set_params() and retrieved via get_params().

Parameters

cut_off (float) – distance cutoff for the criterion

class espressomd.pair_criteria.EnergyCriterion(**kwargs)[source]

Bases: espressomd.pair_criteria._PairCriterion

Pair criterion returning true, if the short range energy between the particles is superior or equal to the cutoff.

Be aware that the short range energy contains the short range part of dipolar and electrostatic interactions, but not the long range part.

The following parameters can be passed to the constructor, changed via set_params() and retrieved via get_params().

Parameters

cut_off (float) – energy cutoff for the criterion

espressomd.particle_data module

class espressomd.particle_data.ParticleHandle

Bases: object

add_bond(self, bond)

Add a single bond to the particle.

Parameters

bond (tuple) – tuple where the first element is either a bond ID or a bond object, and the next elements are particle ids or particle objects to be bonded to.

See also

bonds

Particle property containing a list of all current bonds held by Particle.

Examples

>>> import espressomd.interactions
>>>
>>> system = espressomd.System(box_l=3 * [10])
>>>
>>> # define a harmonic potential and add it to the system
>>> harm_bond = espressomd.interactions.HarmonicBond(r_0=1, k=5)
>>> system.bonded_inter.add(harm_bond)
>>>
>>> # add two particles
>>> p1 = system.part.add(pos=(1, 0, 0))
>>> p2 = system.part.add(pos=(2, 0, 0))
>>>
>>> # bond them via the bond type
>>> p1.add_bond((harm_bond, p2))
>>> # or via the bond index (zero in this case since it is the first one added)
>>> p1.add_bond((0, p2))
add_exclusion(self, partner)

Exclude non-bonded interactions with the given partner.

Note

This needs the feature EXCLUSIONS.

Parameters

partner (ParticleHandle or int) – Particle to exclude.

add_verified_bond(self, bond)

Add a bond, the validity of which has already been verified.

See also

add_bond

Add an unverified bond to the Particle.

bonds

Particle property containing a list of all current bonds held by Particle.

bonds

The bonds stored by this particle. Note that bonds are only stored by one partner. You need to define a bonded interaction.

bonds : list/tuple of tuples/lists

A bond tuple is specified as a bond identifier associated with a particle (bond_ID, part_ID). A single particle may contain multiple such tuples.

See also

espressomd.particle_data.ParticleHandle.add_bond

Method to add bonds to a Particle

espressomd.particle_data.ParticleHandle.delete_bond

Method to remove bonds from a Particle

Bond ids have to be an integer >= 0.

convert_vector_body_to_space(self, vec)

Converts the given vector from the particle’s body frame to the space frame

convert_vector_space_to_body(self, vec)

Converts the given vector from the space frame to the particle’s body frame

delete_all_bonds(self)

Delete all bonds from the particle.

See also

delete_bond

Delete an unverified bond held by the particle.

bonds

Particle property containing a list of all current bonds held by Particle.

delete_bond(self, bond)

Delete a single bond from the particle.

Parameters

bond (tuple) – tuple where the first element is either a bond ID or a bond object, and the next elements are particle ids or particle objects that are bonded to.

See also

bonds

Particle property containing a list of all bonds currently held by Particle.

Examples

>>> import espressomd.interactions
>>>
>>> system = espressomd.System(box_l=3 * [10])
>>>
>>> # define a harmonic potential and add it to the system
>>> harm_bond = espressomd.interactions.HarmonicBond(r_0=1, k=5)
>>> system.bonded_inter.add(harm_bond)
>>>
>>> # bond two particles to the first one
>>> p0 = system.part.add(pos=(1, 0, 0))
>>> p1 = system.part.add(pos=(2, 0, 0))
>>> p2 = system.part.add(pos=(1, 1, 0))
>>> p0.add_bond((harm_bond, p1))
>>> p0.add_bond((harm_bond, p2))
>>>
>>> print(p0.bonds)
((HarmonicBond(0): {'r_0': 1.0, 'k': 5.0, 'r_cut': 0.0}, 1),
 (HarmonicBond(0): {'r_0': 1.0, 'k': 5.0, 'r_cut': 0.0}, 2))
>>> # delete the first bond
>>> p0.delete_bond(p0.bonds[0])
>>> print(p0.bonds)
((HarmonicBond(0): {'r_0': 1.0, 'k': 5.0, 'r_cut': 0.0}, 2),)
delete_exclusion(self, partner)

Remove exclusion of non-bonded interactions with the given partner.

Note

This needs the feature EXCLUSIONS.

Parameters

partner (ParticleHandle or int) – Particle to remove from exclusions.

delete_verified_bond(self, bond)

Delete a single bond from the particle. The validity of which has already been verified.

Parameters

bond (tuple) – tuple where the first element is either a bond ID of a bond type, and the last element is the ID of the partner particle to be bonded to.

See also

delete_bond

Delete an unverified bond held by the Particle.

bonds

Particle property containing a list of all current bonds held by Particle.

dip

The orientation of the dipole axis.

dip : (3,) array_like of float

Note

This needs the feature DIPOLES.

dipm

The magnitude of the dipole moment.

dipm : float

Note

This needs the feature DIPOLES.

director

The particle director.

The director defines the the z-axis in the body-fixed frame. If particle rotations happen, the director, i.e., the body-fixed coordinate system co-rotates. Properties such as the angular velocity espressomd.particle_data.ParticleHandle.omega_body are evaluated in this body-fixed coordinate system. When using particle dipoles, the dipole moment is co-aligned with the particle director. Setting the director thus modifies the dipole moment orientation (espressomd.particle_data.ParticleHandle.dip) and vice versa. See also Rotational degrees of freedom and particle anisotropy.

director : (3,) array_like of float

Note

This needs the feature ROTATION.

exclusions

The exclusion list of particles where non-bonded interactions are ignored.

Note

This needs the feature EXCLUSIONS.

exclusions : (N,) array_like of int

ext_force

An additional external force applied to the particle.

ext_force : (3,) array_like of float

Note

This needs the feature EXTERNAL_FORCES.

ext_torque

An additional external torque is applied to the particle.

ext_torque : (3,) array_like of float

Note

  • This torque is specified in the laboratory frame!

  • This needs features EXTERNAL_FORCES and ROTATION.

f

The instantaneous force acting on this particle.

f : (3,) array_like of float

Note

Whereas the velocity is modified with respect to the velocity you set upon integration, the force it recomputed during the integration step and any force set in this way is immediately lost at the next integration step.

fix

Fixes the particle motion in the specified cartesian directions.

fix : (3,) array_like of bool

Fixes the particle in space. By supplying a set of 3 bools as arguments it is possible to fix motion in x, y, or z coordinates independently. For example:

part[<INDEX>].fix = [False, False, True]

will fix motion for particle with index INDEX only in z.

Note

This needs the feature EXTERNAL_FORCES.

gamma

The body-fixed frictional coefficient used in the Langevin and Brownian thermostats.

gamma : float or (3,) array_like of float

Note

This needs features PARTICLE_ANISOTROPY and THERMOSTAT_PER_PARTICLE.

See also

espressomd.thermostat.Thermostat.set_langevin()

Setting the parameters of the Langevin thermostat

gamma_rot

The particle translational frictional coefficient used in the Langevin and Brownian thermostats.

gamma_rot : float or (3,) array_like of float

Note

This needs features ROTATION, PARTICLE_ANISOTROPY and THERMOSTAT_PER_PARTICLE.

id

Integer particle id

image_box

The image box the particles is in.

This is the number of times the particle position has been folded by the box length in each direction.

lees_edwards_flag

The Lees-Edwards flag that indicate if the particle crossed the upper or lower boundary.

lees_edwards_offset

The accumulated Lees-Edwards offset. Can be used to reconstruct continuous trajectories.

offset : (3,) array_like of float

mass

Particle mass.

mass : float

See also

espressomd.thermostat.Thermostat.set_langevin()

Setting the parameters of the Langevin thermostat

mol_id

The molecule id of the Particle.

mol_id : int

The particle mol_id is used to differentiate between particles belonging to different molecules, e.g. when virtual sites are used, or object-in-fluid cells. The default mol_id for all particles is 0.

Note

The value of mol_id has to be an integer >= 0.

mu_E

Particle electrophoretic velocity.

mu_E : float

This effectively acts as a velocity offset between a lattice-Boltzmann fluid and the particle. Has only an effect if LB is turned on.

Note

This needs the feature LB_ELECTROHYDRODYNAMICS.

node

The node the particle is on, identified by its MPI rank.

normalize_and_check_bond_or_throw_exception(self, bond)

Checks the validity of the given bond:

  • If the bondtype is given as an object or a numerical id

  • If all partners are of type int

  • If the number of partners satisfies the bond

  • If the bond type used exists (is lower than n_bonded_ia)

  • If the number of bond partners fits the bond type

Throws an exception if any of these are not met.

Normalize the bond, i.e. replace bond ids by bond objects and particle objects by particle ids.

omega_body

The particle angular velocity in body frame.

omega_body : (3,) array_like of float

This property sets the angular momentum of this particle in the particles co-rotating frame (or body frame).

Note

This needs the feature ROTATION.

omega_lab

The particle angular velocity the lab frame.

omega_lab : (3,) array_like of float

Note

This needs the feature ROTATION.

If you set the angular velocity of the particle in the lab frame, the orientation of the particle (quat) must be set before setting omega_lab, otherwise the conversion from lab to body frame will not be handled properly.

See also

omega_body

pos

The unwrapped (not folded into central box) particle position.

pos : (3,) array_like of float

pos_folded

The wrapped (folded into central box) position vector of a particle.

pos : (3,) array_like of float

Note

Setting the folded position is ambiguous and is thus not possible, please use pos.

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> system.part.add(pos=(5, 0, 0))
>>> system.part.add(pos=(10, 0, 0))
>>> system.part.add(pos=(25, 0, 0))
>>> for p in system.part:
...     print(p.pos)
[ 5.  0.  0.]
[ 10.   0.   0.]
[ 25.   0.   0.]
>>> for p in system.part:
...     print(p.pos_folded)
[5.0, 0.0, 0.0]
[0.0, 0.0, 0.0]
[5.0, 0.0, 0.0]
q

Particle charge.

q : float

Note

This needs the feature ELECTROSTATICS.

quat

Quaternion representation of the particle rotational position.

quat : (4,) array_like of float

Note

This needs the feature ROTATION.

remove(self)

Delete the particle.

rinertia

The particle rotational inertia.

rinertia : (3,) array_like of float

Sets the diagonal elements of this particle’s rotational inertia tensor. These correspond with the inertial moments along the coordinate axes in the particle’s co-rotating coordinate system. When the particle’s quaternions are set to [1, 0, 0, 0,], the co-rotating and the fixed (lab) frames are co-aligned.

Note

This needs the feature ROTATIONAL_INERTIA.

rotate(self, axis, angle)

Rotates the particle around the given axis

Parameters
  • axis ((3,) array_like of float)

  • angle (float)

rotation

Switches the particle’s rotational degrees of freedom in the Cartesian axes in the body-fixed frame. The content of the torque and omega variables are meaningless for the co-ordinates for which rotation is disabled.

The default is not to integrate any rotational degrees of freedom.

rotation : (3,) array_like of bool

Note

This needs the feature ROTATION.

swimming

Set swimming parameters.

This property takes a dictionary with a different number of entries depending whether there is an implicit fluid (i.e. with the Langevin thermostat) of an explicit fluid (with LB).

Swimming enables the particle to be self-propelled in the direction determined by its quaternion. For setting the quaternion of the particle see quat. The self-propulsion speed will relax to a constant velocity, that is specified by v_swim. Alternatively it is possible to achieve a constant velocity by imposing a constant force term f_swim that is balanced by friction of a (Langevin) thermostat. The way the velocity of the particle decays to the constant terminal velocity in either of these methods is completely determined by the friction coefficient. You may only set one of the possibilities v_swim or f_swim as you cannot relax to constant force and constant velocity at the same time. Setting both v_swim and f_swim to 0.0 disables swimming. This option applies to all non-lattice-Boltzmann thermostats. Note that there is no real difference between v_swim and f_swim since the latter may always be chosen such that the same terminal velocity is achieved for a given friction coefficient.

Parameters
  • f_swim (float) – Achieve a constant velocity by imposing a constant force term f_swim that is balanced by friction of a (Langevin) thermostat. This excludes the option v_swim.

  • v_swim (float) – Achieve a constant velocity by imposing a constant terminal velocity v_swim. This excludes the option f_swim.

  • mode (str, {‘pusher’, ‘puller’, ‘N/A’}) – The LB flow field can be generated by a pushing or a pulling mechanism, leading to change in the sign of the dipolar flow field with respect to the direction of motion.

  • dipole_length (float) – This determines the distance of the source of propulsion from the particle’s center.

Notes

This needs the feature ENGINE. The keys 'mode', and 'dipole_length' are only available if ENGINE is used with LB or CUDA.

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> # Langevin swimmer
>>> system.part.add(pos=[1, 0, 0], swimming={'f_swim': 0.03})
>>> # LB swimmer
>>> system.part.add(pos=[2, 0, 0], swimming={'f_swim': 0.01,
...     'mode': 'pusher', 'dipole_length': 2.0})
to_dict(self)

Returns the particle’s attributes as a dictionary.

It includes the content of particle_attributes, minus a few exceptions:

  • dip, director: Setting only the director will overwrite the orientation of the particle around the axis parallel to dipole moment/director. Quaternions contain the full info.

  • image_box, node

torque_lab

The particle torque in the lab frame.

torque_lab : (3,) array_like of float

This property defines the torque of this particle in the fixed frame (or laboratory frame).

Note

The orientation of the particle (quat) must be set before setting this property, otherwise the conversion from lab to body frame will not be handled properly.

type

The particle type for nonbonded interactions.

type : int

Note

The value of type has to be an integer >= 0.

update(self, new_properties)

Update properties of a particle.

Parameters

new_properties (dict) – Map particle property names to values. All properties except for the particle id can be changed.

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> p = system.part.add(pos=[1, 2, 3], q=1, virtual=True)
>>> print(p.pos, p.q, p.virtual)
[1. 2. 3.] 1.0 True
>>> p.update({'pos': [4, 5, 6], 'virtual': False, 'q': 0})
>>> print(p.pos, p.q, p.virtual)
[4. 5. 6.] 0.0 False
v

The particle velocity in the lab frame.

v : (3,) array_like of float

Note

The velocity remains variable and will be changed during integration.

virtual

Virtual flag.

Declares the particles as virtual (True) or non-virtual (False, default).

virtual : bool

Note

This needs the feature VIRTUAL_SITES

vs_auto_relate_to(self, rel_to)

Setup this particle as virtual site relative to the particle in argument rel_to. A particle cannot relate to itself.

Parameters

rel_to (int or ParticleHandle) – Particle to relate to (either particle id or particle object).

vs_quat

Virtual site quaternion.

This quaternion describes the virtual particles orientation in the body fixed frame of the related real particle.

vs_quat : (4,) array_like of float

Note

This needs the feature VIRTUAL_SITES_RELATIVE.

vs_relative

Virtual sites relative parameters.

Allows for manual access to the attributes of virtual sites in the “relative” implementation. PID denotes the id of the particle to which this virtual site is related and distance the distance between non-virtual and virtual particle. The relative orientation is specified as a quaternion of 4 floats.

vs_relative : tuple (PID, distance, quaternion)

Note

This needs the feature VIRTUAL_SITES_RELATIVE

class espressomd.particle_data.ParticleList

Bases: object

Provides access to the particles.

add(self, *args, **kwargs)

Adds one or several particles to the system

Parameters

Either a dictionary or a bunch of keyword args.

Returns

Return type

Returns an instance of espressomd.particle_data.ParticleHandle for each added particle.

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> # add two particles
>>> system.part.add(id=0, pos=(1, 0, 0))
>>> system.part.add(id=1, pos=(2, 0, 0))

pos is mandatory, id can be omitted, in which case it is assigned automatically. Several particles can be added by passing one value per particle to each property:

system.part.add(pos=((1, 2, 3), (4, 5, 6)), q=(1, -1))
all(self)

Get a slice containing all particles.

by_id(self, id)

Access a particle by its integer id.

by_ids(self, ids)

Get a slice of particles by their integer ids.

clear(self)

Removes all particles.

exists(self, idx)
highest_particle_id

Largest particle id.

n_part_types

Number of particle types.

n_rigidbonds

Number of rigid bonds.

pairs(self)

Generator returns all pairs of particles.

select(self, *args, **kwargs)

Generates a particle slice by filtering particles via a user-defined criterion

Parameters:

Either: a keyword arguments in which the keys are names of particle properties and the values are the values to filter for. E.g.,:

system.part.select(type=0, q=1)

Or: a function taking a ParticleHandle as argument and returning True if the particle is to be filtered for. E.g.,:

system.part.select(lambda p: p.pos[0] < 0.5)
Returns

An instance of ParticleSlice containing the selected particles

Return type

ParticleSlice

writevtk(self, fname, types='all')

Write the positions and velocities of particles with specified types to a VTK file.

Parameters
  • fname (str) – Filename of the target output file

  • types (list of int or the string ‘all’, optional (default: ‘all’)) – A list of particle types which should be output to ‘fname’

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> # add several particles
>>> system.part.add(pos=0.5 * system.box_l, v=[1, 0, 0], type=0)
>>> system.part.add(pos=0.4 * system.box_l, v=[0, 2, 0], type=1)
>>> system.part.add(pos=0.7 * system.box_l, v=[2, 0, 1], type=1)
>>> system.part.add(pos=0.1 * system.box_l, v=[0, 0, 1], type=2)
>>> # write to VTK
>>> system.part.writevtk("part_type_0_1.vtk", types=[0, 1])
>>> system.part.writevtk("part_type_2.vtk", types=[2])
>>> system.part.writevtk("part_all.vtk")

Todo

move to ./io/writer/

class espressomd.particle_data.ParticleSlice

Bases: espressomd.particle_data._ParticleSliceImpl

Handles slice inputs e.g. part[0:2]. Sets values for selected slices or returns values as a single list.

property bonds

The bonds stored by this particle. Note that bonds are only stored by one partner. You need to define a bonded interaction.

bonds : list/tuple of tuples/lists

A bond tuple is specified as a bond identifier associated with a particle (bond_ID, part_ID). A single particle may contain multiple such tuples.

See also

espressomd.particle_data.ParticleHandle.add_bond

Method to add bonds to a Particle

espressomd.particle_data.ParticleHandle.delete_bond

Method to remove bonds from a Particle

Bond ids have to be an integer >= 0.

property dip

The orientation of the dipole axis.

dip : (3,) array_like of float

Note

This needs the feature DIPOLES.

property dipm

The magnitude of the dipole moment.

dipm : float

Note

This needs the feature DIPOLES.

property director

The particle director.

The director defines the the z-axis in the body-fixed frame. If particle rotations happen, the director, i.e., the body-fixed coordinate system co-rotates. Properties such as the angular velocity espressomd.particle_data.ParticleHandle.omega_body are evaluated in this body-fixed coordinate system. When using particle dipoles, the dipole moment is co-aligned with the particle director. Setting the director thus modifies the dipole moment orientation (espressomd.particle_data.ParticleHandle.dip) and vice versa. See also Rotational degrees of freedom and particle anisotropy.

director : (3,) array_like of float

Note

This needs the feature ROTATION.

property exclusions

The exclusion list of particles where non-bonded interactions are ignored.

Note

This needs the feature EXCLUSIONS.

exclusions : (N,) array_like of int

property ext_force

An additional external force applied to the particle.

ext_force : (3,) array_like of float

Note

This needs the feature EXTERNAL_FORCES.

property ext_torque

An additional external torque is applied to the particle.

ext_torque : (3,) array_like of float

Note

  • This torque is specified in the laboratory frame!

  • This needs features EXTERNAL_FORCES and ROTATION.

property f

The instantaneous force acting on this particle.

f : (3,) array_like of float

Note

Whereas the velocity is modified with respect to the velocity you set upon integration, the force it recomputed during the integration step and any force set in this way is immediately lost at the next integration step.

property fix

Fixes the particle motion in the specified cartesian directions.

fix : (3,) array_like of bool

Fixes the particle in space. By supplying a set of 3 bools as arguments it is possible to fix motion in x, y, or z coordinates independently. For example:

part[<INDEX>].fix = [False, False, True]

will fix motion for particle with index INDEX only in z.

Note

This needs the feature EXTERNAL_FORCES.

property gamma

The body-fixed frictional coefficient used in the Langevin and Brownian thermostats.

gamma : float or (3,) array_like of float

Note

This needs features PARTICLE_ANISOTROPY and THERMOSTAT_PER_PARTICLE.

See also

espressomd.thermostat.Thermostat.set_langevin()

Setting the parameters of the Langevin thermostat

property gamma_rot

The particle translational frictional coefficient used in the Langevin and Brownian thermostats.

gamma_rot : float or (3,) array_like of float

Note

This needs features ROTATION, PARTICLE_ANISOTROPY and THERMOSTAT_PER_PARTICLE.

property id

Integer particle id

property image_box

The image box the particles is in.

This is the number of times the particle position has been folded by the box length in each direction.

property lees_edwards_flag

The Lees-Edwards flag that indicate if the particle crossed the upper or lower boundary.

property lees_edwards_offset

The accumulated Lees-Edwards offset. Can be used to reconstruct continuous trajectories.

offset : (3,) array_like of float

property mass

Particle mass.

mass : float

See also

espressomd.thermostat.Thermostat.set_langevin()

Setting the parameters of the Langevin thermostat

property mol_id

The molecule id of the Particle.

mol_id : int

The particle mol_id is used to differentiate between particles belonging to different molecules, e.g. when virtual sites are used, or object-in-fluid cells. The default mol_id for all particles is 0.

Note

The value of mol_id has to be an integer >= 0.

property mu_E

Particle electrophoretic velocity.

mu_E : float

This effectively acts as a velocity offset between a lattice-Boltzmann fluid and the particle. Has only an effect if LB is turned on.

Note

This needs the feature LB_ELECTROHYDRODYNAMICS.

property node

The node the particle is on, identified by its MPI rank.

property omega_body

The particle angular velocity in body frame.

omega_body : (3,) array_like of float

This property sets the angular momentum of this particle in the particles co-rotating frame (or body frame).

Note

This needs the feature ROTATION.

property omega_lab

The particle angular velocity the lab frame.

omega_lab : (3,) array_like of float

Note

This needs the feature ROTATION.

If you set the angular velocity of the particle in the lab frame, the orientation of the particle (quat) must be set before setting omega_lab, otherwise the conversion from lab to body frame will not be handled properly.

See also

omega_body

property pos

The unwrapped (not folded into central box) particle position.

pos : (3,) array_like of float

property q

Particle charge.

q : float

Note

This needs the feature ELECTROSTATICS.

property quat

Quaternion representation of the particle rotational position.

quat : (4,) array_like of float

Note

This needs the feature ROTATION.

property rinertia

The particle rotational inertia.

rinertia : (3,) array_like of float

Sets the diagonal elements of this particle’s rotational inertia tensor. These correspond with the inertial moments along the coordinate axes in the particle’s co-rotating coordinate system. When the particle’s quaternions are set to [1, 0, 0, 0,], the co-rotating and the fixed (lab) frames are co-aligned.

Note

This needs the feature ROTATIONAL_INERTIA.

property rotation

Switches the particle’s rotational degrees of freedom in the Cartesian axes in the body-fixed frame. The content of the torque and omega variables are meaningless for the co-ordinates for which rotation is disabled.

The default is not to integrate any rotational degrees of freedom.

rotation : (3,) array_like of bool

Note

This needs the feature ROTATION.

property swimming

Set swimming parameters.

This property takes a dictionary with a different number of entries depending whether there is an implicit fluid (i.e. with the Langevin thermostat) of an explicit fluid (with LB).

Swimming enables the particle to be self-propelled in the direction determined by its quaternion. For setting the quaternion of the particle see quat. The self-propulsion speed will relax to a constant velocity, that is specified by v_swim. Alternatively it is possible to achieve a constant velocity by imposing a constant force term f_swim that is balanced by friction of a (Langevin) thermostat. The way the velocity of the particle decays to the constant terminal velocity in either of these methods is completely determined by the friction coefficient. You may only set one of the possibilities v_swim or f_swim as you cannot relax to constant force and constant velocity at the same time. Setting both v_swim and f_swim to 0.0 disables swimming. This option applies to all non-lattice-Boltzmann thermostats. Note that there is no real difference between v_swim and f_swim since the latter may always be chosen such that the same terminal velocity is achieved for a given friction coefficient.

Parameters
  • f_swim (float) – Achieve a constant velocity by imposing a constant force term f_swim that is balanced by friction of a (Langevin) thermostat. This excludes the option v_swim.

  • v_swim (float) – Achieve a constant velocity by imposing a constant terminal velocity v_swim. This excludes the option f_swim.

  • mode (str, {‘pusher’, ‘puller’, ‘N/A’}) – The LB flow field can be generated by a pushing or a pulling mechanism, leading to change in the sign of the dipolar flow field with respect to the direction of motion.

  • dipole_length (float) – This determines the distance of the source of propulsion from the particle’s center.

Notes

This needs the feature ENGINE. The keys 'mode', and 'dipole_length' are only available if ENGINE is used with LB or CUDA.

Examples

>>> import espressomd
>>> system = espressomd.System(box_l=[10, 10, 10])
>>> # Langevin swimmer
>>> system.part.add(pos=[1, 0, 0], swimming={'f_swim': 0.03})
>>> # LB swimmer
>>> system.part.add(pos=[2, 0, 0], swimming={'f_swim': 0.01,
...     'mode': 'pusher', 'dipole_length': 2.0})
to_dict(self)

Returns the particles attributes as a dictionary.

It can be used to save the particle data and recover it by using

>>> p = system.part.add(...)
>>> particle_dict = p.to_dict()
>>> system.part.add(particle_dict)

It includes the content of particle_attributes, minus a few exceptions:

  • dip, director: Setting only the director will overwrite the orientation of the particle around the axis parallel to dipole moment/director. Quaternions contain the full info.

  • image_box, node

property torque_lab

The particle torque in the lab frame.

torque_lab : (3,) array_like of float

This property defines the torque of this particle in the fixed frame (or laboratory frame).

Note

The orientation of the particle (quat) must be set before setting this property, otherwise the conversion from lab to body frame will not be handled properly.

property type

The particle type for nonbonded interactions.

type : int

Note

The value of type has to be an integer >= 0.

property v

The particle velocity in the lab frame.

v : (3,) array_like of float

Note

The velocity remains variable and will be changed during integration.

property virtual

Virtual flag.

Declares the particles as virtual (True) or non-virtual (False, default).

virtual : bool

Note

This needs the feature VIRTUAL_SITES

property vs_quat

Virtual site quaternion.

This quaternion describes the virtual particles orientation in the body fixed frame of the related real particle.

vs_quat : (4,) array_like of float

Note

This needs the feature VIRTUAL_SITES_RELATIVE.

property vs_relative

Virtual sites relative parameters.

Allows for manual access to the attributes of virtual sites in the “relative” implementation. PID denotes the id of the particle to which this virtual site is related and distance the distance between non-virtual and virtual particle. The relative orientation is specified as a quaternion of 4 floats.

vs_relative : tuple (PID, distance, quaternion)

Note

This needs the feature VIRTUAL_SITES_RELATIVE

espressomd.particle_data.set_slice_one_for_all(particle_slice, attribute, values)
espressomd.particle_data.set_slice_one_for_each(particle_slice, attribute, values)

espressomd.polymer module

espressomd.polymer.linear_polymer_positions(**kwargs)

Generates particle positions for polymer creation.

Parameters
  • n_polymers (int, required) – Number of polymer chains

  • beads_per_chain (int, required) – Number of monomers per chain

  • bond_length (float, required) – distance between adjacent monomers in a chain

  • seed (int, required) – Seed for the RNG used to generate the particle positions.

  • bond_angle (float, optional) – If set, this parameter defines the angle between adjacent bonds within a polymer.

  • start_positions (array_like float.) – If set, this vector defines the start positions for the polymers, i.e., the position of each polymer’s first monomer bead. Here, a numpy array of shape (n_polymers, 3) is expected.

  • min_distance (float, optional) – Minimum distance between all generated positions. Defaults to 0

  • respect_constraints (bool, optional) – If True, the particle setup tries to obey previously defined constraints. Default value is False.

  • max_tries (int, optional) – Maximal number of attempts to generate every monomer position, as well as maximal number of retries per polymer, if choosing suitable monomer positions fails. Default value is 1000. Depending on the total number of beads and constraints, this value needs to be adapted.

Returns

Three-dimensional numpy array, namely a list of polymers containing the coordinates of the respective monomers.

Return type

ndarray

espressomd.polymer.setup_diamond_polymer(system=None, bond=None, MPC=0, dist_cM=1, val_cM=0.0, val_nodes=0.0, start_id='auto', no_bonds=False, type_nodes=0, type_nM=1, type_cM=2)

Places particles to form a diamond lattice shaped polymer. Can also assign charges and bonds at the appropriate places.

Parameters
  • system (espressomd.system.System, required) – System to which the particles will be added.

  • bond (espressomd.interactions.BondedInteraction, required if no_bonds == False) – The bond to be created between monomers. Should be compatible with the spacing system.box_l[0]*(0.25 * sqrt(3))/(MPC + 1) between monomers.

  • no_bonds (bool, optional) – If True, the particles will only be placed in the system but not connected by bonds. In that case, the bond argument can be omitted. Defaults to False.

  • MPC (int, optional) – Monomers per chain, where chain refers to the connection between the 8 lattice nodes of the diamond lattice. Defaults to 0.

  • dist_cM (int, optional) – Distance between charged monomers in the chains. Defaults to 1.

  • val_cM (float, optional) – Valence of the charged monomers in the chains. Defaults to 0.

  • val_nodes (float, optional) – Valence of the node particles. Defaults to 0.

  • start_id (int or 'auto', optional) – Start id for particle creation. Subsequent ids will be contiguous integers. If 'auto', particle ids will start after the highest id of particles already in the system.

  • type_nodes (int, optional) – Type assigned to the node particles. Defaults to 0.

  • type_nM (int, optional) – Type assigned to the neutral monomers in the chains. Defaults to 1.

  • type_cM (int, optional) – Type assigned to the charged monomers in the chains. Defaults to 2.

espressomd.polymer.validate_params(_params, default)

espressomd.profiler module

espressomd.profiler.begin_section(name)

Start named section in profiler.

Parameters

name (str) – Name of the section

espressomd.profiler.end_section(name)

End named section in profiler.

Parameters

name (str) – Name of the section

espressomd.reaction_methods module

class espressomd.reaction_methods.ConstantpHEnsemble(**kwargs)[source]

Bases: espressomd.reaction_methods.ReactionAlgorithm

This class implements the constant pH Ensemble.

When adding an acid-base reaction, the acid and base particle types are always assumed to be at index 0 of the lists passed to arguments reactant_types and product_types.

constant_pH

Constant pH value.

Type

float

add_reaction(*args, **kwargs)[source]

Sets up a reaction in the forward and backward direction.

Parameters
  • gamma (float) – Equilibrium constant \(\Gamma\) of the reaction in simulation units (see section Reaction ensemble for its definition).

  • reactant_types (list of int) – List of particle types of reactants in the reaction.

  • reactant_coefficients (list of int) – List of stoichiometric coefficients of the reactants in the same order as the list of their types.

  • product_types (list of int) – List of particle types of products in the reaction.

  • product_coefficients (list of int) – List of stoichiometric coefficients of products of the reaction in the same order as the list of their types

  • default_charges (dict) – A dictionary of default charges for types that occur in the provided reaction.

  • check_for_electroneutrality (bool) – Check for electroneutrality of the given reaction. Default is True.

required_keys()[source]
valid_keys()[source]
class espressomd.reaction_methods.ReactionAlgorithm(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

This class provides the base class for Reaction Algorithms like the Reaction Ensemble algorithm and the constant pH method. Initialize the reaction algorithm by setting the standard pressure, temperature, and the exclusion range.

Note: When creating particles the velocities of the new particles are set according the Maxwell-Boltzmann distribution. In this step the mass of the new particle is assumed to equal 1.

Parameters
  • kT (float) – Thermal energy of the system in simulation units

  • exclusion_range (float) – Minimal distance from any particle, within which new particles will not be inserted.

  • seed (int) – Initial counter value (or seed) of the Mersenne Twister RNG.

  • exclusion_radius_per_type (dict, optional) – Mapping of particle types to exclusion radii.

  • search_algorithm (str) – Pair search algorithm. Default is "order_n", which evaluates the distance between the inserted particle and all other particles in the system, which scales with O(N). For MPI-parallel simulations, the "parallel" method is faster. The "parallel" method is not recommended for simulations on 1 MPI rank, since it comes with the overhead of a ghost particle update.

remove_constraint()

Remove any previously defined constraint. Requires setting the volume using set_volume().

set_cylindrical_constraint_in_z_direction()

Constrain the reaction moves within a cylinder aligned on the z-axis. Requires setting the volume using set_volume().

Parameters
  • center_x (float) – x coordinate of center of the cylinder.

  • center_y (float) – y coordinate of center of the cylinder.

  • radius_of_cylinder (float) – radius of the cylinder

set_wall_constraints_in_z_direction()

Restrict the sampling area to a slab in z-direction. Requires setting the volume using set_volume(). This constraint is necessary when working with Electrostatic Layer Correction (ELC).

Parameters
  • slab_start_z (float) – z coordinate of the bottom wall.

  • slab_end_z (float) – z coordinate of the top wall.

Examples

>>> import espressomd
>>> import espressomd.shapes
>>> import espressomd.electrostatics
>>> import espressomd.reaction_methods
>>> import numpy as np
>>> # setup a charged system
>>> box_l = 20
>>> elc_gap = 10
>>> system = espressomd.System(box_l=[box_l, box_l, box_l + elc_gap])
>>> system.time_step = 0.001
>>> system.cell_system.skin = 0.4
>>> types = {"HA": 0, "A-": 1, "H+": 2, "wall": 3}
>>> charges = {types["HA"]: 0, types["A-"]: -1, types["H+"]: +1}
>>> for i in range(10):
...     system.part.add(pos=np.random.random(3) * box_l, type=types["A-"], q=charges[types["A-"]])
...     system.part.add(pos=np.random.random(3) * box_l, type=types["H+"], q=charges[types["H+"]])
>>> for particle_type in charges.keys():
...     system.non_bonded_inter[particle_type, types["wall"]].wca.set_params(epsilon=1.0, sigma=1.0)
>>> # add ELC actor
>>> p3m = espressomd.electrostatics.P3M(prefactor=1.0, accuracy=1e-2)
>>> elc = espressomd.electrostatics.ELC(actor=p3m, maxPWerror=1.0, gap_size=elc_gap)
>>> system.actors.add(elc)
>>> # add constant pH method
>>> RE = espressomd.reaction_methods.ConstantpHEnsemble(kT=1, exclusion_range=1, seed=77)
>>> RE.constant_pH = 2
>>> RE.add_reaction(gamma=0.0088, reactant_types=[types["HA"]],
...                 product_types=[types["A-"], types["H+"]],
...                 default_charges=charges)
>>> # add walls for the ELC gap
>>> RE.set_wall_constraints_in_z_direction(0, box_l)
>>> RE.set_volume(box_l**3)
>>> system.constraints.add(shape=espressomd.shapes.Wall(dist=0, normal=[0, 0, 1]),
...                        particle_type=types["wall"])
>>> system.constraints.add(shape=espressomd.shapes.Wall(dist=-box_l, normal=[0, 0, -1]),
...                        particle_type=types["wall"])
get_wall_constraints_in_z_direction()

Returns the restrictions of the sampling area in z-direction.

set_volume()

Set the volume to be used in the acceptance probability of the reaction ensemble. This can be useful when using constraints, if the relevant volume is different from the box volume. If not used the default volume which is used, is the box volume.

Parameters

volume (float) – Volume of the system in simulation units

get_volume()

Get the volume to be used in the acceptance probability of the reaction ensemble.

get_acceptance_rate_configurational_moves():

Returns the acceptance rate for the configuration moves.

get_acceptance_rate_reaction()

Returns the acceptance rate for the given reaction.

Parameters

reaction_id (int) – Reaction id

set_non_interacting_type()

Sets the particle type for non-interacting particles. Default value: 100. This is used to temporarily hide particles during a reaction trial move, if they are to be deleted after the move is accepted. Please change this value if you intend to use the type 100 for some other particle types with interactions, or if you need improved performance, as the default value of 100 causes some overhead. Please also note that particles in the current implementation of the Reaction Ensemble are only hidden with respect to Lennard-Jones and Coulomb interactions. Hiding of other interactions, for example a magnetic, needs to be implemented in the code.

Parameters

type (int) – Particle type for the hidden particles

get_non_interacting_type()

Returns the type which is used for hiding particle

reaction()

Performs randomly selected reactions.

Parameters

reaction_steps (int, optional) – The number of reactions to be performed at once, defaults to 1.

displacement_mc_move_for_particles_of_type()

Performs displacement Monte Carlo moves for particles of a given type. New positions of the displaced particles are chosen from the whole box with a uniform probability distribution and new velocities are sampled from the Maxwell-Boltzmann distribution.

The sequence of moves is only accepted if each individual move in the sequence was accepted. Particles are sampled without replacement. Therefore, calling this method once for 10 particles is not equivalent to calling this method 10 times for 1 particle.

Parameters
  • type_mc (int) – Particle type which should be moved

  • particle_number_to_be_changed (int) – Number of particles to move, defaults to 1. Particles are selected without replacement.

Returns

Whether all moves were accepted.

Return type

bool

delete_particle()

Deletes the particle of the given p_id and makes sure that the particle range has no holes. This function has some restrictions, as e.g. bonds are not deleted. Therefore only apply this function to simple ions.

Parameters

p_id (int) – Id of the particle to be deleted.

change_reaction_constant()

Changes the reaction constant of a given reaction (for both the forward and backward reactions). The reaction_id which is assigned to a reaction depends on the order in which add_reaction() was called. The 0th reaction has reaction_id=0, the next added reaction needs to be addressed with reaction_id=1, etc.

Parameters
  • reaction_id (int) – Reaction id

  • gamma (float) – New reaction constant

delete_reaction()

Delete a reaction from the set of used reactions (the forward and backward reaction). The reaction_id which is assigned to a reaction depends on the order in which add_reaction() was called. The 0th reaction has reaction_id=0, the next added reaction needs to be addressed with reaction_id=1, etc. After the deletion of a reaction subsequent reactions take the reaction_id of the deleted reaction.

Parameters

reaction_id (int) – Reaction id

add_reaction(**kwargs)[source]

Sets up a reaction in the forward and backward direction.

Parameters
  • gamma (float) – Equilibrium constant \(\Gamma\) of the reaction in simulation units (see section Reaction ensemble for its definition).

  • reactant_types (list of int) – List of particle types of reactants in the reaction.

  • reactant_coefficients (list of int) – List of stoichiometric coefficients of the reactants in the same order as the list of their types.

  • product_types (list of int) – List of particle types of products in the reaction.

  • product_coefficients (list of int) – List of stoichiometric coefficients of products of the reaction in the same order as the list of their types

  • default_charges (dict) – A dictionary of default charges for types that occur in the provided reaction.

  • check_for_electroneutrality (bool) – Check for electroneutrality of the given reaction. Default is True.

get_status()[source]

Returns the status of the reaction ensemble in a dictionary containing the used reactions, the used kT and the used exclusion radius.

required_keys()[source]
valid_keys()[source]
class espressomd.reaction_methods.ReactionEnsemble(**kwargs)[source]

Bases: espressomd.reaction_methods.ReactionAlgorithm

This class implements the Reaction Ensemble.

class espressomd.reaction_methods.SingleReaction(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

make_backward_reaction()[source]
required_keys()[source]
valid_keys()[source]
class espressomd.reaction_methods.WidomInsertion(**kwargs)[source]

Bases: espressomd.reaction_methods.ReactionAlgorithm

This class implements the Widom insertion method in the canonical ensemble for homogeneous systems, where the excess chemical potential is not depending on the location.

add_reaction(**kwargs)[source]

Sets up a reaction in the forward and backward direction.

Parameters
  • gamma (float) – Equilibrium constant \(\Gamma\) of the reaction in simulation units (see section Reaction ensemble for its definition).

  • reactant_types (list of int) – List of particle types of reactants in the reaction.

  • reactant_coefficients (list of int) – List of stoichiometric coefficients of the reactants in the same order as the list of their types.

  • product_types (list of int) – List of particle types of products in the reaction.

  • product_coefficients (list of int) – List of stoichiometric coefficients of products of the reaction in the same order as the list of their types

  • default_charges (dict) – A dictionary of default charges for types that occur in the provided reaction.

  • check_for_electroneutrality (bool) – Check for electroneutrality of the given reaction. Default is True.

calculate_excess_chemical_potential(**kwargs)[source]

Given a set of samples of the particle insertion potential energy, calculates the excess chemical potential and its statistical error.

Parameters
  • particle_insertion_potential_energy_samples (array_like of float) – Samples of the particle insertion potential energy.

  • N_blocks (int, optional) – Number of bins for binning analysis.

Returns

  • mean (float) – Mean excess chemical potential.

  • error (float) – Standard error of the mean.

calculate_particle_insertion_potential_energy(**kwargs)[source]

Measures the potential energy when particles are inserted in the system following the reaction provided in reaction_id. Please define the insertion moves first by calling the method add_reaction() (with only product types specified).

Note that although this function does not provide directly the chemical potential, it can be used to calculate it. For an example of such an application please check /samples/widom_insertion.py.

Parameters

reaction_id (int) – Reaction identifier.

required_keys()[source]
valid_keys()[source]

espressomd.rotation module

espressomd.rotation.diagonalized_inertia_tensor(positions, masses)[source]

Calculate the diagonalized inertia tensor with respect to the center of mass for given point masses at given positions.

Parameters
  • positions ((N,3) array_like of float) – Positions of the masses.

  • masses ((N,) array_like of float)

Returns

  • (3,) array_like of float – Principal moments of inertia.

  • (3,3) array_like of float – Principal axes of inertia. Note that the second axis is the coordinate axis (same as input).

espressomd.rotation.inertia_tensor(positions, masses)[source]

Calculate the inertia tensor for given point masses at given positions.

Parameters
  • positions ((N,3) array_like of float) – Point masses’ positions.

  • masses ((N,) array_like of float)

Returns

Moment of inertia tensor.

Return type

(3,3) array_like of float

Notes

See wikipedia.

espressomd.rotation.matrix_to_quat(m)[source]

Convert the (proper) rotation matrix to the corresponding quaternion representation based on pyquaternion.

Parameters

m ((3,3) array_like of float) – Rotation matrix.

Returns

Quaternion representation of the rotation.

Return type

array_like of float

Raises

ValueError – If the matrix does not a correspond to a proper rotation (det(m) != 1).

espressomd.script_interface module

class espressomd.script_interface.PObjectRef

Bases: object

print_sip(self)
class espressomd.script_interface.PScriptInterface(name=None, policy='GLOBAL', sip=None, **kwargs)

Bases: object

Python interface to a core ScriptInterface object. The core ScriptInterface class is itself an interface for other core classes, such as constraints, shapes, observables, etc.

This class can be instantiated in two ways: (1) with the object id of an existing core ScriptInterface object, or (2) with parameters to construct a new ScriptInterface object in the core.

Parameters
  • sip (PObjectRef) – Object id of an existing core object (method 1).

  • name (str) – Name of the core class to instantiate (method 2).

  • **kwargs – Parameters for the core class constructor (method 2).

  • policy (str, {‘GLOBAL’, ‘LOCAL’}) – Creation policy. The managed object exists either on all MPI nodes with ‘GLOBAL’ (default), or only on the head node with ‘LOCAL’.

sip

Pointer to a ScriptInterface object in the core.

Type

PObjectRef

call_method(self, method, **kwargs)

Call a method of the core class.

Parameters
  • method (Creation policy.) – Name of the core method.

  • **kwargs – Arguments for the method.

get_parameter(self, name)
get_params(self)
get_sip(self)

Get pointer to the core object.

name(self)

Return name of the core class.

set_params(self, **kwargs)
class espressomd.script_interface.ScriptInterfaceHelper(**kwargs)

Bases: espressomd.script_interface.PScriptInterface

define_bound_methods(self)
generate_caller(self, method_name)
class espressomd.script_interface.ScriptObjectList(**kwargs)

Bases: espressomd.script_interface.ScriptInterfaceHelper

Base class for container-like classes such as Constraints and LBBoundaries. Derived classes must implement an add() method which adds a single item to the container.

The core objects must be managed by a container derived from ScriptInterface::ObjectList.

class espressomd.script_interface.ScriptObjectMap(**kwargs)

Bases: espressomd.script_interface.ScriptInterfaceHelper

Base class for container-like classes such as BondedInteractions. Derived classes must implement an add() method which adds a single item to the container.

The core objects must be managed by a container derived from ScriptInterface::ObjectMap.

clear(self)

Remove all elements.

items(self)
keys(self)
remove(self, key)

Remove the element with the given key. This is a no-op if the key does not exist.

espressomd.script_interface.script_interface_register(c)

Decorator used to register script interface classes. This will store a name<->class relationship in a registry, so that parameters of type object can be instantiated as the correct python class.

espressomd.shapes module

class espressomd.shapes.Cylinder(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

A cylinder shape.

center

Coordinates of the center of the cylinder.

Type

(3,) array_like of float

axis

Axis of the cylinder.

Type

(3,) array_like of float

radius

Radius of the cylinder.

Type

float

length

Length of the cylinder.

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

open

cylinder is open or has caps.

Type

bool

class espressomd.shapes.Ellipsoid(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

An ellipsoid.

For now only ellipsoids of revolution are supported. The symmetry axis is aligned parallel to the x-direction.

center

Coordinates of the center of the ellipsoid.

Type

(3,) array_like of float

a

Semiaxis along the axis of rotational symmetry.

Type

float

b

Equatorial semiaxes.

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

class espressomd.shapes.HollowConicalFrustum(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

Hollow conical frustum shape.

cyl_transform_params

Parameters of the spacial orientation of the frustum. Contained must be parameters for center and axis. orientation has no effect, unless central_angle != 0

Type

espressomd.math.CylindricalTransformationParameters,

r1

Radius r1.

Type

float

r2

Radius r2.

Type

float

length

Length of the conical frustum along axis.

Type

float

thickness

The thickness of the frustum. Also determines the rounding radius of the edges

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inside of the shape. Defaults to 1

Type

int, optional

central_angle

A central_angle creates an opening in the frustum along the side, centered symmetrically around the direction of cyl_transform_params. Must be between 0 and 2 pi. Defaults to 0.

Type

float, optional

_images/conical_frustum.png
class espressomd.shapes.Rhomboid(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

A parallelepiped.

a

First base vector.

Type

(3,) array_like of float

b

Second base vector.

Type

(3,) array_like of float

c

Third base vector.

Type

(3,) array_like of float

corner

Lower left corner of the rhomboid.

Type

(3,) array_like of float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

class espressomd.shapes.Shape[source]

Bases: object

class espressomd.shapes.SimplePore(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

Two parallel infinite planes, and a cylindrical channel connecting them. The cylinder and the planes are connected by torus segments with an adjustable radius.

radius

The radius of the pore.

Type

float

length

The distance between the planes.

Type

float

smoothing_radius

Radius of the torus segments

Type

float

axis

Axis of the cylinder and normal of the planes

Type

(3,) array_like of float

center

Position of the center of the cylinder.

Type

(3,) array_like of float

class espressomd.shapes.Slitpore(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

Schematic for the Slitpore shape with labeled geometrical parameters.
channel_width
Type

float

lower_smoothing_radius
Type

float

pore_length
Type

float

pore_mouth
Type

float

pore_width
Type

float

upper_smoothing_radius
Type

float

dividing_plane
Type

float

class espressomd.shapes.Sphere(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

A sphere.

center

Center of the sphere

Type

(3,) array_like of float

radius

Radius of the sphere.

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

class espressomd.shapes.SpheroCylinder(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

A cylinder with hemispheres as caps.

center

Coordinates of the center of the cylinder.

Type

(3,) array_like of float

axis

Axis of the cylinder.

Type

(3,) array_like of float

radius

Radius of the cylinder.

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

length

Length of the cylinder (not including the caps).

Type

float

class espressomd.shapes.Torus(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

A torus shape.

center

Coordinates of the center of the torus.

Type

(3,) array_like of float

normal

Normal axis of the torus.

Type

(3,) array_like of float

radius

Radius of the torus.

Type

float

tube_radius

Radius of the tube.

Type

float

direction

Surface orientation, for +1 the normal points out of the mantel, for -1 it points inward.

Type

int

class espressomd.shapes.Union(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptObjectList

A union of shapes.

This shape represents a union of shapes where the distance to the union is defined by the smallest distance to any shape contained in the union.

size()

Number of shapes contained in the union.

clear()

Remove all shapes from the union.

add(shape)[source]

Add a shape to the union.

Parameters

shape (array_like / instance of espressomd.shapes.Shape) – Shape instance(s) to be added to the union.

remove(shape)[source]

Remove a shape from the union.

Parameters

shape (array_like / instance of espressomd.shapes.Shape) – Shape instance(s) to be removed from the union.

class espressomd.shapes.Wall(**kwargs)[source]

Bases: espressomd.shapes.Shape, espressomd.script_interface.ScriptInterfaceHelper

An infinite plane.

dist

Distance from the origin.

Type

float

normal

Normal vector of the plane (needs not to be length 1).

Type

(3,) array_like of int

espressomd.system module

class espressomd.system.System(**kwargs)

Bases: object

The ESPResSo system class.

Note

every attribute has to be declared at the class level. This means that methods cannot define an attribute by using self.new_attr = somevalue without declaring it inside this indentation level, either as method, property or reference.

actors

object espressomd.actors.Actors

Type

actors

analysis

object espressomd.analyze.Analysis

Type

analysis

auto_exclusions(self, distance)

Automatically adds exclusions between particles that are bonded.

This only considers pair bonds.

Requires feature EXCLUSIONS.

Parameters

distance (int) – Bond distance upto which the exclusions should be added.

auto_update_accumulators

object espressomd.accumulators.AutoUpdateAccumulators

Type

auto_update_accumulators

bond_breakage

object espressomd.bond_breakage.BreakageSpecs

Type

bond_breakage

bonded_inter

object espressomd.interactions.BondedInteractions

Type

bonded_inter

box_l

(3,) array_like of float: Dimensions of the simulation box

cell_system

object espressomd.cell_system.CellSystem

Type

cell_system

change_volume_and_rescale_particles(self, d_new, dir='xyz')

Change box size and rescale particle coordinates.

Parameters
  • d_new (float) – New box length

  • dir (str, optional) – Coordinate to work on, "x", "y", "z" or "xyz" for isotropic. Isotropic assumes a cubic box.

collision_detection

object espressomd.collision_detection.CollisionDetection

Type

collision_detection

comfixed

object espressomd.comfixed.ComFixed

Type

comfixed

constraints

object espressomd.constraints.Constraints

Type

constraints

cuda_init_handle

object espressomd.cuda_init.CudaInitHandle

Type

cuda_init_handle

distance(self, p1, p2)

Return the scalar distance between particles, between a particle and a point or between two points, respecting periodic boundaries.

Parameters
  • p1 (ParticleHandle or (3,) array of float) – First particle or position.

  • p2 (ParticleHandle or (3,) array of float) – Second particle or position.

distance_vec(self, p1, p2)

Return the distance vector between particles, between a particle and a point or between two points, respecting periodic boundaries.

Parameters
  • p1 (ParticleHandle or (3,) array of float) – First particle or position.

  • p2 (ParticleHandle or (3,) array of float) – Second particle or position.

ekboundaries

object espressomd.ekboundaries.EKBoundaries

Type

ekboundaries

force_cap

float: If > 0, the magnitude of the force on the particles are capped to this value.

galilei

object espressomd.galilei.GalileiTransform

Type

galilei

integrator

object espressomd.integrate.IntegratorHandle

Type

integrator

lbboundaries

object espressomd.lbboundaries.LBBoundaries

Type

lbboundaries

lees_edwards

object espressomd.lees_edwards.LeesEdwards

Type

lees_edwards

max_cut_bonded
max_cut_nonbonded
max_oif_objects

Maximum number of objects as per the object_in_fluid method.

min_global_cut
non_bonded_inter

object espressomd.interactions.NonBondedInteractions

Type

non_bonded_inter

number_of_particles(self, type=None)
Parameters

type (int (type)) – Particle type to count the number for.

Returns

The number of particles which have the given type.

Return type

int

Raises

RuntimeError – If the particle type is not currently tracked by the system. To select which particle types are tracked, call setup_type_map().

part

object espressomd.particle_data.ParticleList

Type

part

periodicity

(3,) array_like of bool: System periodicity in [x, y, z], False for no periodicity in this direction, True for periodicity

rotate_system(self, **kwargs)

Rotate the particles in the system about the center of mass.

If ROTATION is activated, the internal rotation degrees of freedom are rotated accordingly.

Parameters
  • phi (float) – Angle between the z-axis and the rotation axis.

  • theta (float) – Rotation of the axis around the y-axis.

  • alpha (float) – How much to rotate

setup_type_map(self, type_list=None)

For using ESPResSo conveniently for simulations in the grand canonical ensemble, or other purposes, when particles of certain types are created and deleted frequently. Particle ids can be stored in lists for each individual type and so random ids of particles of a certain type can be drawn. If you want ESPResSo to keep track of particle ids of a certain type you have to initialize the method by calling the setup function. After that ESPResSo will keep track of particle ids of that type.

thermostat

object espressomd.thermostat.Thermostat

Type

thermostat

time

Set the time in the simulation.

time_step

Set the time step for the integrator.

velocity_difference(self, p1, p2)

Return the velocity difference between two particles, considering Lees-Edwards boundary conditions, if active.

Parameters
virtual_sites

Set the virtual site implementation.

Requires feature VIRTUAL_SITES.

volume(self)

Return box volume of the cuboid box.

espressomd.thermostat module

espressomd.thermostat.AssertThermostatType(*allowedthermostats)

Assert that only a certain group of thermostats is active at a time.

Decorator class to ensure that only specific combinations of thermostats can be activated together by the user. Usage:

cdef class Thermostat:
    @AssertThermostatType(THERMO_LANGEVIN, THERMO_DPD)
    def set_langevin(self, kT=None, gamma=None, gamma_rotation=None,
             act_on_virtual=False, seed=None):
        ...

This will prefix an assertion that prevents setting up the Langevin thermostat if the list of active thermostats contains anything other than the DPD and Langevin thermostats.

Parameters

allowedthermostats (str) – Allowed list of thermostats which are known to be compatible with one another.

class espressomd.thermostat.Thermostat

Bases: object

get_state(self)

Returns the thermostat status.

get_ts(self)
recover(self)

Recover a suspended thermostat

If the thermostat had been suspended using suspend(), it can be recovered with this method.

set_brownian(self, kT, gamma, gamma_rotation=None, act_on_virtual=False, seed=None)

Sets the Brownian thermostat.

Parameters
  • kT (float) – Thermal energy of the simulated heat bath.

  • gamma (float) – Contains the friction coefficient of the bath. If the feature PARTICLE_ANISOTROPY is compiled in, then gamma can be a list of three positive floats, for the friction coefficient in each cardinal direction.

  • gamma_rotation (float, optional) – The same applies to gamma_rotation, which requires the feature ROTATION to work properly. But also accepts three floats if PARTICLE_ANISOTROPY is also compiled in.

  • seed (int) – Initial counter value (or seed) of the philox RNG. Required on first activation of the Brownian thermostat. Must be positive.

set_dpd(self, kT, seed=None)

Sets the DPD thermostat with required parameters ‘kT’. This also activates the DPD interactions.

Parameters
  • kT (float) – Thermal energy of the heat bath.

  • seed (int) – Initial counter value (or seed) of the philox RNG. Required on first activation of the DPD thermostat. Must be positive.

set_langevin(self, kT, gamma, gamma_rotation=None, act_on_virtual=False, seed=None)

Sets the Langevin thermostat.

Parameters
  • kT (float) – Thermal energy of the simulated heat bath.

  • gamma (float) – Contains the friction coefficient of the bath. If the feature PARTICLE_ANISOTROPY is compiled in, then gamma can be a list of three positive floats, for the friction coefficient in each cardinal direction.

  • gamma_rotation (float, optional) – The same applies to gamma_rotation, which requires the feature ROTATION to work properly. But also accepts three floats if PARTICLE_ANISOTROPY is also compiled in.

  • act_on_virtual (bool, optional) – If True the thermostat will act on virtual sites, default is False.

  • seed (int) – Initial counter value (or seed) of the philox RNG. Required on first activation of the Langevin thermostat. Must be positive.

set_lb(self, seed=None, act_on_virtual=True, LB_fluid=None, gamma=0.0)

Sets the LB thermostat.

This thermostat requires the feature LBFluid or LBFluidGPU.

Parameters
  • LB_fluid (LBFluid or LBFluidGPU)

  • seed (int) – Seed for the random number generator, required if kT > 0. Must be positive.

  • act_on_virtual (bool, optional) – If True the thermostat will act on virtual sites (default).

  • gamma (float) – Frictional coupling constant for the MD particle coupling.

set_npt(self, kT, gamma0, gammav, seed=None)

Sets the NPT thermostat.

Parameters
  • kT (float) – Thermal energy of the heat bath

  • gamma0 (float) – Friction coefficient of the bath

  • gammav (float) – Artificial friction coefficient for the volume fluctuations.

  • seed (int) – Initial counter value (or seed) of the philox RNG. Required on first activation of the Langevin thermostat. Must be positive.

set_stokesian(self, kT=None, seed=None)

Sets the SD thermostat with required parameters.

This thermostat requires the feature STOKESIAN_DYNAMICS.

Parameters
  • kT (float, optional) – Temperature.

  • seed (int, optional) – Seed for the random number generator

suspend(self)

Suspend the thermostat

The thermostat can be suspended, e.g. to perform an energy minimization.

turn_off(self)

Turns off all the thermostat and sets all the thermostat variables to zero.

espressomd.utils module

class espressomd.utils.array_locked(input_array)

Bases: numpy.ndarray

Returns a non-writable numpy.ndarray with a special error message upon usage of __setitem__ or in-place operators. Cast return in __get__ of array properties to array_locked to prevent these operations.

ERR_MSG = 'ESPResSo array properties return non-writable arrays and can only be modified as a whole, not in-place or component-wise. Use numpy.copy(<ESPResSo array property>) to get a writable copy.'
espressomd.utils.check_array_type_or_throw_except(x, n, t, msg)

Check that x is of type t and that n values are given, otherwise raise a ValueError with message msg. Integers are accepted when a float was asked for.

espressomd.utils.check_required_keys(required_keys, obtained_keys)
espressomd.utils.check_type_or_throw_except(x, n, t, msg)

Check that x is of type t and that n values are given, otherwise raise a ValueError with message msg. If x is an array/list/tuple, the type checking is done on the elements, and all elements are checked. If n is 1, x is assumed to be a scalar. Integers are accepted when a float was asked for.

espressomd.utils.check_valid_keys(valid_keys, obtained_keys)
espressomd.utils.handle_errors(msg)

Gathers runtime errors.

Parameters

msg (str) – Error message that is to be raised.

espressomd.utils.is_valid_type(value, t)

Extended checks for numpy int, float and bool types. Handles 0-dimensional arrays.

espressomd.utils.nesting_level(obj)

Returns the maximal nesting level of an object.

espressomd.utils.to_char_pointer(s)

Returns a char pointer which contains the information of the provided python string.

Parameters

s (str)

espressomd.utils.to_str(s)

Returns a python string.

Parameters

s (char*)

espressomd.version module

espressomd.version.friendly()

Dot version of the version.

espressomd.version.git_branch()

Git branch of the build if known, otherwise empty.

espressomd.version.git_commit()

Git commit of the build if known, otherwise empty.

espressomd.version.git_state()

Git state of the build if known, otherwise empty. State is “CLEAN” if the repository was not changed from git_commit(), “DIRTY” otherwise.

espressomd.version.major()

Prints the major version of ESPResSo.

espressomd.version.minor()

Prints the minor version of ESPResSo.

espressomd.virtual_sites module

class espressomd.virtual_sites.ActiveVirtualSitesHandle(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Handle for the virtual sites implementation active in the core

This should not be used directly.

have_quaternion

Whether the virtual sites has a quaternion (only relevant for VirtualSitesRelative).

Type

bool

override_cutoff_check

Whether to disable the sanity check that triggers when attempting to set up a virtual site too far away from the real particle in a MPI-parallel simulation with more than 1 core. Disabling this check is not recommended; it is only relevant in rare situations when using the Hybrid decomposition cell system.

Type

bool

class espressomd.virtual_sites.VirtualSitesInertialessTracers(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Virtual sites which are advected with an LB fluid without inertia. Forces are on them are transferred to the fluid instantly.

class espressomd.virtual_sites.VirtualSitesOff(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Virtual sites implementation which does nothing (default)

class espressomd.virtual_sites.VirtualSitesRelative(**kwargs)[source]

Bases: espressomd.script_interface.ScriptInterfaceHelper

Virtual sites implementation placing virtual sites relative to other particles. See Rigid arrangements of particles for details.

espressomd.visualization module

class espressomd.visualization.Camera(cam_pos=array([0, 0, 1]), cam_target=array([0, 0, 0]), cam_right=array([1., 0., 0.]), move_speed=0.5, global_rot_speed=3.0, center=array([0, 0, 0]))[source]

Bases: object

get_camera_rotation_matrix(target_vec, up_vec)[source]
move_backward()[source]
move_down()[source]
move_forward()[source]
move_left()[source]
move_right()[source]
move_up()[source]
rotate_camera(mouse_pos, mouse_pos_old, mouse_button_state)[source]
rotate_system_XL()[source]
rotate_system_XR()[source]
rotate_system_YL()[source]
rotate_system_YR()[source]
rotate_system_ZL()[source]
rotate_system_ZR()[source]
rotate_system_x(angle)[source]
rotate_system_y(angle)[source]
rotate_system_z(angle)[source]
rotate_vector(vector, phi, axis)[source]

Rotate vector around (unit vector) axis by angle phi. Uses Rodrigues’ rotation formula.

update_modelview()[source]
class espressomd.visualization.Cylinder(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Cylinder.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.Ellipsoid(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Ellipsoid.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.HollowConicalFrustum(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape HollowConicalFrustum.

draw()[source]

Draw using OpenGL Extrusion library, if available. Use rasterization of base class, otherwise.

class espressomd.visualization.KeyboardButtonEvent(button, fireEvent, callback, internal=False)[source]

Bases: object

Keyboard event used for keyboard callbacks. Stores button, event type and callback.

class espressomd.visualization.KeyboardFireEvent[source]

Bases: object

Event type of button used for keyboard callbacks.

Hold = 1
Pressed = 0
Released = 2
class espressomd.visualization.KeyboardManager[source]

Bases: object

Handles keyboard callbacks.

callback_on_button(be, b)[source]
handle_input()[source]
keyboard_down(button)[source]
keyboard_up(button)[source]
register_button(buttonEvent)[source]

Register keyboard input callbacks.

class espressomd.visualization.MouseButtonEvent(button, fireEvent, callback, positional=False)[source]

Bases: object

Mouse event used for mouse callbacks. Stores button and callback.

class espressomd.visualization.MouseFireEvent[source]

Bases: object

Event type of mouse button used for mouse callbacks.

ButtonMotion = 2
ButtonPressed = 0
ButtonReleased = 3
DoubleClick = 4
FreeMotion = 1
class espressomd.visualization.MouseManager[source]

Bases: object

Handles mouse callbacks.

mouse_click(button, state, x, y)[source]
mouse_move(x, y)[source]
register_button(mouseEvent)[source]

Register mouse input callbacks.

class espressomd.visualization.Shape(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: object

Shape base class in the visualizer context.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.SimplePore(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape SimplePore.

draw()[source]

Draw using OpenGL Extrusion library, if available. Use OpenGL primitives + clip planes, otherwise.

class espressomd.visualization.Slitpore(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Slitpore.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.Sphere(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Sphere.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.Spherocylinder(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Spherocylinder.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

class espressomd.visualization.Wall(shape, particle_type, color, material, quality, box_l, rasterize_resolution, rasterize_pointsize)[source]

Bases: espressomd.visualization.Shape

Drawable Shape Wall.

draw()[source]

Draw shape via rasterization. Used as a default draw method. Can and should be overwritten in child classes to implement a better draw method.

espressomd.visualization.draw_arrow(pos, d, radius, color, material, quality)[source]
espressomd.visualization.draw_box(p0, s, color, material, width)[source]
espressomd.visualization.draw_cylinder(posA, posB, radius, color, material, quality, draw_caps=False)[source]
espressomd.visualization.draw_plane(corners, color, material)[source]
espressomd.visualization.get_extra_clip_plane()[source]
class espressomd.visualization.openGLLive(system, **kwargs)[source]

Bases: object

This class provides live visualization using pyOpenGL. Use the update method to push your current simulation state after integrating. Modify the appearance with a list of keywords. Timed callbacks can be registered via the register_callback() method and keyboard callbacks via keyboard_manager.register_button().

Parameters
  • system (espressomd.system.System)

  • window_size ((2,) array_like of int, optional) – Size of the visualizer window in pixels.

  • name (str, optional) – The name of the visualizer window.

  • background_color ((3,) array_like of float, optional) – RGB of the background.

  • periodic_images ((3,) array_like of int, optional) – Periodic repetitions on both sides of the box in xyz-direction.

  • draw_box (bool, optional) – Draw wireframe boundaries.

  • draw_axis (bool, optional) – Draw xyz system axes.

  • draw_nodes (bool, optional) – Draw node boxes.

  • draw_cells (bool, optional) – Draw cell boxes.

  • quality_particles (int, optional) – The number of subdivisions for particle spheres.

  • quality_bonds (int, optional) – The number of subdivisions for cylindrical bonds.

  • quality_arrows (int, optional) – The number of subdivisions for external force arrows.

  • quality_constraints (int, optional) – The number of subdivisions for primitive constraints.

  • close_cut_distance (float, optional) – The distance from the viewer to the near clipping plane.

  • far_cut_distance (float, optional) – The distance from the viewer to the far clipping plane.

  • camera_position (str or (3,) array_like of float, optional) – Initial camera position. Use 'auto' (default) for shifted position in z-direction.

  • camera_target (str or (3,) array_like of float, optional) – Initial camera target. Use 'auto' (default) to look towards the system center.

  • camera_right ((3,) array_like of float, optional) – Camera right vector in system coordinates. Default is [1, 0, 0]

  • particle_sizes (str or array_like of float or callable, optional) –

    • 'auto' (default): The Lennard-Jones sigma value of the self-interaction is used for the particle diameter.

    • callable: A lambda function with one argument. Internally, the numerical particle type is passed to the lambda function to determine the particle radius.

    • list: A list of particle radii, indexed by the particle type.

  • particle_coloring (str, optional) –

    • 'auto' (default): Colors of charged particles are specified by particle_charge_colors, neutral particles by particle_type_colors.

    • 'charge': Minimum and maximum charge of all particles is determined by the visualizer. All particles are colored by a linear interpolation of the two colors given by particle_charge_colors according to their charge.

    • 'type': Particle colors are specified by particle_type_colors, indexed by their numerical particle type.

    • 'node': Color according to the node the particle is on.

  • particle_type_colors (array_like of float, optional) – Colors for particle types.

  • particle_type_materials (array_like of str, optional) – Materials of the particle types.

  • particle_charge_colors ((2,) array_like of float, optional) – Two colors for min/max charged particles.

  • draw_constraints (bool, optional) – Enables constraint visualization. For simple constraints (planes, spheres and cylinders), OpenGL primitives are used. Otherwise, visualization by rasterization is used.

  • rasterize_pointsize (float, optional) – Point size for the rasterization dots.

  • rasterize_resolution (float, optional) – Accuracy of the rasterization.

  • quality_constraints (int, optional) – The number of subdivisions for primitive constraints.

  • constraint_type_colors (array_like of float, optional) – Colors of the constraints by type.

  • constraint_type_materials (array_like of str, optional) – Materials of the constraints by type.

  • draw_bonds (bool, optional) – Enables bond visualization.

  • bond_type_radius (array_like of float, optional) – Radii of bonds by type.

  • bond_type_colors (array_like of float, optional) – Color of bonds by type.

  • bond_type_materials (array_like of str, optional) – Materials of bonds by type.

  • ext_force_arrows (bool, optional) – Enables external force visualization.

  • ext_force_arrows_type_scale (array_like of float, optional) – List of scale factors of external force arrows for different particle types.

  • ext_force_arrows_type_colors (array_like of float, optional) – Colors of ext_force arrows for different particle types.

  • ext_force_arrows_type_materials (array_like of str, optional) – Materials of ext_force arrows for different particle types.

  • ext_force_arrows_type_radii (array_like of float, optional) – List of arrow radii for different particle types.

  • force_arrows (bool, optional) – Enables particle force visualization.

  • force_arrows_type_scale (array_like of float, optional) – List of scale factors of particle force arrows for different particle types.

  • force_arrows_type_colors (array_like of float, optional) – Colors of particle force arrows for different particle types.

  • force_arrows_type_materials (array_like of str, optional) – Materials of particle force arrows for different particle types.

  • force_arrows_type_radii (array_like of float, optional) – List of arrow radii for different particle types.

  • velocity_arrows (bool, optional) – Enables particle velocity visualization.

  • velocity_arrows_type_scale (array_like of float, optional) – List of scale factors of particle velocity arrows for different particle types.

  • velocity_arrows_type_colors (array_like of float, optional) – Colors of particle velocity arrows for different particle types.

  • velocity_arrows_type_materials (array_like of str, optional) – Materials of particle velocity arrows for different particle types.

  • velocity_arrows_type_radii (array_like of float, optional) – List of arrow radii for different particle types.

  • director_arrows (bool, optional) – Enables particle director visualization.

  • director_arrows_type_scale (float, optional) – Scale factor of particle director arrows for different particle types.

  • director_arrows_type_colors (array_like of float, optional) – Colors of particle director arrows for different particle types.

  • director_arrows_type_materials (array_like of str, optional) – Materials of particle director arrows for different particle types.

  • director_arrows_type_radii (array_like of float, optional) – List of arrow radii for different particle types.

  • drag_enabled (bool, optional) – Enables mouse-controlled particles dragging (Default: False)

  • drag_force (bool, optional) – Factor for particle dragging

  • LB_draw_nodes (bool, optional) – Draws a lattice representation of the LB nodes that are no boundaries.

  • LB_draw_node_boundaries (bool, optional) – Draws a lattice representation of the LB nodes that are boundaries.

  • LB_draw_boundaries (bool, optional) – Draws the LB shapes.

  • LB_draw_velocity_plane (bool, optional) – Draws LB node velocity arrows in a plane perpendicular to the axis in LB_plane_axis, at a distance LB_plane_dist from the origin, every LB_plane_ngrid grid points.

  • LB_plane_axis (int, optional) – LB node velocity arrows are drawn in a plane perpendicular to the x, y, or z axes, which are encoded by values 0, 1, or 2 respectively.

  • LB_plane_dist (float, optional) – LB node velocity arrows are drawn in a plane perpendicular to the x, y, or z axes, at a distance LB_plane_dist from the origin.

  • LB_plane_ngrid (int, optional) – LB node velocity arrows are drawn in a plane perpendicular to the x, y, or z axes, every LB_plane_ngrid grid points.

  • LB_vel_scale (float, optional) – Rescale LB node velocity arrow length.

  • LB_vel_radius_scale (float, optional) – Rescale LB node velocity arrow radii.

  • LB_arrow_color ((3,) array_like of float, optional) – RGB of the LB velocity arrows.

  • LB_arrow_material (str, optional) – Material of LB arrows.

  • quality_constraints (int, optional) – The number of subdivisions for LB arrows.

  • light_pos ((3,) array_like of float, optional) – If auto (default) is used, the light is placed dynamically in the particle barycenter of the system. Otherwise, a fixed coordinate can be set.

  • light_colors (array_like of float, optional) – Three lists to specify ambient, diffuse and specular light colors.

  • light_brightness (float, optional) – Brightness (inverse constant attenuation) of the light.

  • light_size (float, optional) – Size (inverse linear attenuation) of the light. If auto (default) is used, the light size will be set to a reasonable value according to the box size at start.

  • spotlight_enabled (bool, optional) – If set to True (default), it enables a spotlight on the camera position pointing in look direction.

  • spotlight_colors (array_like of float, optional) – Three lists to specify ambient, diffuse and specular spotlight colors.

  • spotlight_angle (float, optional) – The spread angle of the spotlight in degrees (from 0 to 90).

  • spotlight_brightness (float, optional) – Brightness (inverse constant attenuation) of the spotlight.

  • spotlight_focus (float, optional) – Focus (spot exponent) for the spotlight from 0 (uniform) to 128.

Notes

The visualization of some constraints is either improved by or even relies on the presence of an installed OpenGL Extrusion library on your system.

materials = {'bright': [0.9, 1.0, 0.8, 0.4, 1.0], 'chrome': [0.25, 0.4, 0.774597, 0.6, 1.0], 'dark': [0.4, 0.5, 0.1, 0.4, 1.0], 'medium': [0.6, 0.8, 0.2, 0.4, 1.0], 'plastic': [0, 0.55, 0.7, 0.25, 1.0], 'rubber': [0, 0.4, 0.7, 0.078125, 1.0], 'steel': [0.25, 0.38, 0, 0.32, 1.0], 'transparent1': [0.6, 0.8, 0.2, 0.5, 0.8], 'transparent2': [0.6, 0.8, 0.2, 0.5, 0.4], 'transparent3': [0.6, 0.8, 0.2, 0.5, 0.2]}
register_callback(cb, interval=1000)[source]

Register timed callbacks.

run(integration_steps=1)[source]

Convenience method with a simple integration thread.

screenshot(path)[source]

Renders the current state into an image file at path with dimensions of specs['window_size'] in PNG format.

start()[source]

The blocking start method.

update()[source]

Update method to be called after integration. Changes of ESPResSo system can only happen here.

update_system_info()[source]

Update the information stored in dict self.system_info.

The dictionary is used for showing system information, such as particle or constraint information, in the visualizer window.

espressomd.visualization.rotation_helper(d)[source]
espressomd.visualization.set_solid_material(color, material=(0.6, 1.0, 0.1, 0.4, 1.0))[source]

Module contents

exception espressomd.FeaturesError(missing_features)[source]

Bases: Exception

espressomd.assert_features(*args)[source]

Raise an exception when a list of features is not a subset of the compiled-in features.

espressomd.has_features(*args)[source]

Check whether a list of features is a subset of the compiled-in features.

espressomd.missing_features(*args)[source]

Return a list of the missing features in the arguments.