ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
DiffusiveFluxKernelThermalized_double_precision_CUDA.h
Go to the documentation of this file.
1//======================================================================================================================
2//
3// This file is part of waLBerla. waLBerla is free software: you can
4// redistribute it and/or modify it under the terms of the GNU General Public
5// License as published by the Free Software Foundation, either version 3 of
6// the License, or (at your option) any later version.
7//
8// waLBerla is distributed in the hope that it will be useful, but WITHOUT
9// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11// for more details.
12//
13// You should have received a copy of the GNU General Public License along
14// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
15//
16//! \\file DiffusiveFluxKernelThermalized_double_precision_CUDA.h
17//! \\author pystencils
18//======================================================================================================================
19
20// kernel generated with pystencils v1.4+1.ge851f4e, lbmpy v1.4+1.ge9efe34,
21// sympy v1.12.1, lbmpy_walberla/pystencils_walberla from waLBerla commit
22// 007e77e077ad9d22b5eed6f3d3118240993e553c
23
24#pragma once
25#include "core/DataTypes.h"
26#include "core/logging/Logging.h"
27
28#include "gpu/GPUField.h"
29#include "gpu/GPUWrapper.h"
30
31#include "domain_decomposition/BlockDataID.h"
32#include "domain_decomposition/IBlock.h"
33#include "domain_decomposition/StructuredBlockStorage.h"
34#include "field/SwapableCompare.h"
35
36#include <functional>
37#include <unordered_map>
38
39#ifdef __GNUC__
40#define RESTRICT __restrict__
41#else
42#define RESTRICT
43#endif
44
45#if (defined WALBERLA_CXX_COMPILER_IS_GNU) || \
46 (defined WALBERLA_CXX_COMPILER_IS_CLANG)
47#pragma GCC diagnostic push
48#pragma GCC diagnostic ignored "-Wunused-parameter"
49#pragma GCC diagnostic ignored "-Wreorder"
50#endif
51
52namespace walberla {
53namespace pystencils {
54
56public:
58 BlockDataID jID_, BlockDataID rhoID_, double D, uint32_t field_size_0,
59 uint32_t field_size_1, uint32_t field_size_2, uint32_t seed,
60 uint32_t time_step)
61 : jID(jID_), rhoID(rhoID_), D_(D), field_size_0_(field_size_0),
62 field_size_1_(field_size_1), field_size_2_(field_size_2), seed_(seed),
63 time_step_(time_step), block_offset_0_(uint32_t(0)),
64 block_offset_1_(uint32_t(0)), block_offset_2_(uint32_t(0)),
65 configured_(false) {}
66
67 void run(IBlock *block, gpuStream_t stream = nullptr);
68
69 void runOnCellInterval(const shared_ptr<StructuredBlockStorage> &blocks,
70 const CellInterval &globalCellInterval,
71 cell_idx_t ghostLayers, IBlock *block,
72 gpuStream_t stream = nullptr);
73
74 void operator()(IBlock *block, gpuStream_t stream = nullptr) {
76 }
77
78 static std::function<void(IBlock *)> getSweep(
79 const shared_ptr<DiffusiveFluxKernelThermalized_double_precision_CUDA>
80 &kernel) {
81 return [kernel](IBlock *b) { kernel->run(b); };
82 }
83
84 static std::function<void(IBlock *, gpuStream_t)> getSweepOnCellInterval(
85 const shared_ptr<DiffusiveFluxKernelThermalized_double_precision_CUDA>
86 &kernel,
87 const shared_ptr<StructuredBlockStorage> &blocks,
88 const CellInterval &globalCellInterval, cell_idx_t ghostLayers = 1) {
89 return [kernel, blocks, globalCellInterval,
90 ghostLayers](IBlock *b, gpuStream_t stream = nullptr) {
91 kernel->runOnCellInterval(blocks, globalCellInterval, ghostLayers, b,
92 stream);
93 };
94 }
95
96 std::function<void(IBlock *)> getSweep(gpuStream_t stream = nullptr) {
97 return [this, stream](IBlock *b) { this->run(b, stream); };
98 }
99
100 std::function<void(IBlock *)>
101 getSweepOnCellInterval(const shared_ptr<StructuredBlockStorage> &blocks,
102 const CellInterval &globalCellInterval,
103 cell_idx_t ghostLayers = 1,
104 gpuStream_t stream = nullptr) {
105 return [this, blocks, globalCellInterval, ghostLayers, stream](IBlock *b) {
106 this->runOnCellInterval(blocks, globalCellInterval, ghostLayers, b,
107 stream);
108 };
109 }
110
111 void configure(const shared_ptr<StructuredBlockStorage> &blocks,
112 IBlock *block) {
113 Cell BlockCellBB = blocks->getBlockCellBB(*block).min();
114 block_offset_0_ = uint32_t(BlockCellBB[0]);
115 block_offset_1_ = uint32_t(BlockCellBB[1]);
116 block_offset_2_ = uint32_t(BlockCellBB[2]);
117 configured_ = true;
118 }
119
120 inline double getD() const { return D_; }
121 inline uint32_t getBlock_offset_0() const { return block_offset_0_; }
122 inline uint32_t getBlock_offset_1() const { return block_offset_1_; }
123 inline uint32_t getBlock_offset_2() const { return block_offset_2_; }
124 inline uint32_t getField_size_0() const { return field_size_0_; }
125 inline uint32_t getField_size_1() const { return field_size_1_; }
126 inline uint32_t getField_size_2() const { return field_size_2_; }
127 inline uint32_t getSeed() const { return seed_; }
128 inline uint32_t getTime_step() const { return time_step_; }
129 inline void setD(const double value) { D_ = value; }
130 inline void setBlock_offset_0(const uint32_t value) {
131 block_offset_0_ = value;
132 }
133 inline void setBlock_offset_1(const uint32_t value) {
134 block_offset_1_ = value;
135 }
136 inline void setBlock_offset_2(const uint32_t value) {
137 block_offset_2_ = value;
138 }
139 inline void setField_size_0(const uint32_t value) { field_size_0_ = value; }
140 inline void setField_size_1(const uint32_t value) { field_size_1_ = value; }
141 inline void setField_size_2(const uint32_t value) { field_size_2_ = value; }
142 inline void setSeed(const uint32_t value) { seed_ = value; }
143 inline void setTime_step(const uint32_t value) { time_step_ = value; }
144
145private:
146 BlockDataID jID;
147 BlockDataID rhoID;
148 double D_;
149 uint32_t block_offset_0_;
150 uint32_t block_offset_1_;
151 uint32_t block_offset_2_;
152 uint32_t field_size_0_;
153 uint32_t field_size_1_;
154 uint32_t field_size_2_;
155 uint32_t seed_;
156 uint32_t time_step_;
157
158 bool configured_;
159};
160
161} // namespace pystencils
162} // namespace walberla
163
164#if (defined WALBERLA_CXX_COMPILER_IS_GNU) || \
165 (defined WALBERLA_CXX_COMPILER_IS_CLANG)
166#pragma GCC diagnostic pop
167#endif
Definition Cell.hpp:96
static std::function< void(IBlock *)> getSweep(const shared_ptr< DiffusiveFluxKernelThermalized_double_precision_CUDA > &kernel)
DiffusiveFluxKernelThermalized_double_precision_CUDA(BlockDataID jID_, BlockDataID rhoID_, double D, uint32_t field_size_0, uint32_t field_size_1, uint32_t field_size_2, uint32_t seed, uint32_t time_step)
void runOnCellInterval(const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers, IBlock *block, gpuStream_t stream=nullptr)
static std::function< void(IBlock *, gpuStream_t)> getSweepOnCellInterval(const shared_ptr< DiffusiveFluxKernelThermalized_double_precision_CUDA > &kernel, const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers=1)
std::function< void(IBlock *)> getSweepOnCellInterval(const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers=1, gpuStream_t stream=nullptr)
cudaStream_t stream[1]
CUDA streams for parallel computing on CPU and GPU.
static double * block(double *p, std::size_t index, std::size_t size)
Definition elc.cpp:176
\file PackInfoPdfDoublePrecision.cpp \author pystencils