ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
DiffusiveFluxKernelThermalized_single_precision_CUDA.h
Go to the documentation of this file.
1//======================================================================================================================
2//
3// This file is part of waLBerla. waLBerla is free software: you can
4// redistribute it and/or modify it under the terms of the GNU General Public
5// License as published by the Free Software Foundation, either version 3 of
6// the License, or (at your option) any later version.
7//
8// waLBerla is distributed in the hope that it will be useful, but WITHOUT
9// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11// for more details.
12//
13// You should have received a copy of the GNU General Public License along
14// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
15//
16//! \\file DiffusiveFluxKernelThermalized_single_precision_CUDA.h
17//! \\author pystencils
18//======================================================================================================================
19
20// kernel generated with pystencils v1.3.7+13.gdfd203a, lbmpy
21// v1.3.7+10.gd3f6236, sympy v1.12.1, lbmpy_walberla/pystencils_walberla from
22// waLBerla commit c69cb11d6a95d32b2280544d3d9abde1fe5fdbb5
23
24#pragma once
25#include "core/DataTypes.h"
26#include "core/logging/Logging.h"
27
28#include "gpu/GPUField.h"
29#include "gpu/GPUWrapper.h"
30
31#include "domain_decomposition/BlockDataID.h"
32#include "domain_decomposition/IBlock.h"
33#include "domain_decomposition/StructuredBlockStorage.h"
34#include "field/SwapableCompare.h"
35
36#include <functional>
37#include <unordered_map>
38
39#ifdef __GNUC__
40#define RESTRICT __restrict__
41#elif _MSC_VER
42#define RESTRICT __restrict
43#else
44#define RESTRICT
45#endif
46
47#if (defined WALBERLA_CXX_COMPILER_IS_GNU) || \
48 (defined WALBERLA_CXX_COMPILER_IS_CLANG)
49#pragma GCC diagnostic push
50#pragma GCC diagnostic ignored "-Wunused-parameter"
51#pragma GCC diagnostic ignored "-Wreorder"
52#endif
53
54namespace walberla {
55namespace pystencils {
56
58public:
60 BlockDataID jID_, BlockDataID rhoID_, float D, uint32_t field_size_0,
61 uint32_t field_size_1, uint32_t field_size_2, uint32_t seed,
62 uint32_t time_step)
63 : jID(jID_), rhoID(rhoID_), D_(D), field_size_0_(field_size_0),
64 field_size_1_(field_size_1), field_size_2_(field_size_2), seed_(seed),
65 time_step_(time_step), block_offset_0_(uint32_t(0)),
66 block_offset_1_(uint32_t(0)), block_offset_2_(uint32_t(0)),
67 configured_(false) {}
68
69 void run(IBlock *block, gpuStream_t stream = nullptr);
70
71 void runOnCellInterval(const shared_ptr<StructuredBlockStorage> &blocks,
72 const CellInterval &globalCellInterval,
73 cell_idx_t ghostLayers, IBlock *block,
74 gpuStream_t stream = nullptr);
75
76 void operator()(IBlock *block, gpuStream_t stream = nullptr) {
78 }
79
80 static std::function<void(IBlock *)> getSweep(
81 const shared_ptr<DiffusiveFluxKernelThermalized_single_precision_CUDA>
82 &kernel) {
83 return [kernel](IBlock *b) { kernel->run(b); };
84 }
85
86 static std::function<void(IBlock *, gpuStream_t)> getSweepOnCellInterval(
87 const shared_ptr<DiffusiveFluxKernelThermalized_single_precision_CUDA>
88 &kernel,
89 const shared_ptr<StructuredBlockStorage> &blocks,
90 const CellInterval &globalCellInterval, cell_idx_t ghostLayers = 1) {
91 return [kernel, blocks, globalCellInterval,
92 ghostLayers](IBlock *b, gpuStream_t stream = nullptr) {
93 kernel->runOnCellInterval(blocks, globalCellInterval, ghostLayers, b,
94 stream);
95 };
96 }
97
98 std::function<void(IBlock *)> getSweep(gpuStream_t stream = nullptr) {
99 return [this, stream](IBlock *b) { this->run(b, stream); };
100 }
101
102 std::function<void(IBlock *)>
103 getSweepOnCellInterval(const shared_ptr<StructuredBlockStorage> &blocks,
104 const CellInterval &globalCellInterval,
105 cell_idx_t ghostLayers = 1,
106 gpuStream_t stream = nullptr) {
107 return [this, blocks, globalCellInterval, ghostLayers, stream](IBlock *b) {
108 this->runOnCellInterval(blocks, globalCellInterval, ghostLayers, b,
109 stream);
110 };
111 }
112
113 void configure(const shared_ptr<StructuredBlockStorage> &blocks,
114 IBlock *block) {
115 Cell BlockCellBB = blocks->getBlockCellBB(*block).min();
116 block_offset_0_ = uint32_t(BlockCellBB[0]);
117 block_offset_1_ = uint32_t(BlockCellBB[1]);
118 block_offset_2_ = uint32_t(BlockCellBB[2]);
119 configured_ = true;
120 }
121
122 inline float getD() const { return D_; }
123 inline uint32_t getBlock_offset_0() const { return block_offset_0_; }
124 inline uint32_t getBlock_offset_1() const { return block_offset_1_; }
125 inline uint32_t getBlock_offset_2() const { return block_offset_2_; }
126 inline uint32_t getField_size_0() const { return field_size_0_; }
127 inline uint32_t getField_size_1() const { return field_size_1_; }
128 inline uint32_t getField_size_2() const { return field_size_2_; }
129 inline uint32_t getSeed() const { return seed_; }
130 inline uint32_t getTime_step() const { return time_step_; }
131 inline void setD(const float value) { D_ = value; }
132 inline void setBlock_offset_0(const uint32_t value) {
133 block_offset_0_ = value;
134 }
135 inline void setBlock_offset_1(const uint32_t value) {
136 block_offset_1_ = value;
137 }
138 inline void setBlock_offset_2(const uint32_t value) {
139 block_offset_2_ = value;
140 }
141 inline void setField_size_0(const uint32_t value) { field_size_0_ = value; }
142 inline void setField_size_1(const uint32_t value) { field_size_1_ = value; }
143 inline void setField_size_2(const uint32_t value) { field_size_2_ = value; }
144 inline void setSeed(const uint32_t value) { seed_ = value; }
145 inline void setTime_step(const uint32_t value) { time_step_ = value; }
146
147private:
148 BlockDataID jID;
149 BlockDataID rhoID;
150 float D_;
151 uint32_t block_offset_0_;
152 uint32_t block_offset_1_;
153 uint32_t block_offset_2_;
154 uint32_t field_size_0_;
155 uint32_t field_size_1_;
156 uint32_t field_size_2_;
157 uint32_t seed_;
158 uint32_t time_step_;
159
160 bool configured_;
161};
162
163} // namespace pystencils
164} // namespace walberla
165
166#if (defined WALBERLA_CXX_COMPILER_IS_GNU) || \
167 (defined WALBERLA_CXX_COMPILER_IS_CLANG)
168#pragma GCC diagnostic pop
169#endif
Definition Cell.hpp:96
DiffusiveFluxKernelThermalized_single_precision_CUDA(BlockDataID jID_, BlockDataID rhoID_, float D, uint32_t field_size_0, uint32_t field_size_1, uint32_t field_size_2, uint32_t seed, uint32_t time_step)
static std::function< void(IBlock *, gpuStream_t)> getSweepOnCellInterval(const shared_ptr< DiffusiveFluxKernelThermalized_single_precision_CUDA > &kernel, const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers=1)
std::function< void(IBlock *)> getSweepOnCellInterval(const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers=1, gpuStream_t stream=nullptr)
void runOnCellInterval(const shared_ptr< StructuredBlockStorage > &blocks, const CellInterval &globalCellInterval, cell_idx_t ghostLayers, IBlock *block, gpuStream_t stream=nullptr)
static std::function< void(IBlock *)> getSweep(const shared_ptr< DiffusiveFluxKernelThermalized_single_precision_CUDA > &kernel)
cudaStream_t stream[1]
CUDA streams for parallel computing on CPU and GPU.
static double * block(double *p, std::size_t index, std::size_t size)
Definition elc.cpp:176
\file PackInfoPdfDoublePrecision.cpp \author pystencils