Loading [MathJax]/extensions/TeX/AMSmath.js
ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages Concepts
RunningAverage.hpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2010-2022 The ESPResSo project
3 * Copyright (C) 2002,2003,2004,2005,2006,2007,2008,2009,2010
4 * Max-Planck-Institute for Polymer Research, Theory Group
5 *
6 * This file is part of ESPResSo.
7 *
8 * ESPResSo is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * ESPResSo is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#ifndef STATISTICS_RUNING_AVERAGE_HPP
23#define STATISTICS_RUNING_AVERAGE_HPP
24
25#include <algorithm>
26#include <cmath>
27#include <limits>
28
29namespace Utils {
30namespace Statistics {
31
32/**
33 * \brief Keep running average and variance.
34 * The average should be numerically stable.
35 */
36template <typename Scalar> class RunningAverage {
37public:
39 : m_n(0), m_old_avg(0), m_new_avg(0), m_old_var(0), m_new_var(0.0),
40 m_min(std::numeric_limits<Scalar>::max()),
41 m_max(-std::numeric_limits<Scalar>::max()) {}
42 void add_sample(Scalar s) {
43 m_n++;
44
45 if (m_n == 1) {
46 m_old_avg = m_new_avg = s;
47 } else {
48 m_new_avg = m_old_avg + (s - m_old_avg) / m_n;
49 m_new_var = m_old_var + (s - m_old_avg) * (s - m_new_avg);
50
51 m_old_avg = m_new_avg;
52 m_old_var = m_new_var;
53 }
54
55 m_min = std::min(m_min, s);
56 m_max = std::max(m_max, s);
57 }
58
59 void clear() { m_n = 0; }
60
61 int n() const { return m_n; }
62
63 /** Average of the samples */
64 Scalar avg() const {
65 if (m_n > 0)
66 return m_new_avg;
67
68 return 0.0;
69 }
70 /** Variance of the samples */
71 Scalar var() const {
72 if (m_n > 1)
73 return m_new_var / m_n;
74
75 return 0.0;
76 }
77
78 /** Standard deviation of the samples */
79 Scalar sig() const { return std::sqrt(var()); }
80
81 /** Minimum */
82 Scalar min() const { return m_min; }
83
84 /** Minimum */
85 Scalar max() const { return m_max; }
86
87private:
88 int m_n;
89 Scalar m_old_avg, m_new_avg;
90 Scalar m_old_var, m_new_var;
91 Scalar m_min, m_max;
92};
93} // namespace Statistics
94} // namespace Utils
95
96#endif
Keep running average and variance.
Scalar avg() const
Average of the samples.
Scalar sig() const
Standard deviation of the samples.
Scalar var() const
Variance of the samples.