Loading [MathJax]/extensions/TeX/AMSmath.js
ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages Concepts
Ellipsoid.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2010-2022 The ESPResSo project
3 * Copyright (C) 2002,2003,2004,2005,2006,2007,2008,2009,2010
4 * Max-Planck-Institute for Polymer Research, Theory Group
5 *
6 * This file is part of ESPResSo.
7 *
8 * ESPResSo is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * ESPResSo is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include <shapes/Ellipsoid.hpp>
23
24#include <utils/Vector.hpp>
25#include <utils/math/sqr.hpp>
26
27#include <algorithm>
28
29namespace Shapes {
30void Ellipsoid::calculate_dist(const Utils::Vector3d &pos, double &dist,
31 Utils::Vector3d &vec) const {
32
33 /* get particle position in reference frame of ellipsoid */
34 Utils::Vector3d const ppos_e = pos - m_center;
35
36 /* set appropriate initial point for Newton's method */
37 double l = 0.;
38 int distance_prefactor = -1;
39 if (not inside_ellipsoid(ppos_e)) {
40 l = *std::ranges::max_element(m_semiaxes) * ppos_e.norm();
41 distance_prefactor = 1;
42 }
43
44 /* find root via Newton's method */
45 double eps = 10.;
46 int step = 0;
47 while ((eps >= 1e-12) and (step < 100)) {
48 auto const l0 = l;
49 l -= newton_term(ppos_e, l0);
50 eps = std::abs(l - l0);
51 step++;
52 }
53
54 /* calculate dist and vec */
55 for (unsigned int i = 0; i < 3; i++) {
56 auto const semi_sq = Utils::sqr(m_semiaxes[i]);
57 vec[i] = (ppos_e[i] - semi_sq * ppos_e[i] / (l + semi_sq));
58 }
59
60 dist = distance_prefactor * m_direction * vec.norm();
61}
62
63bool Ellipsoid::inside_ellipsoid(const Utils::Vector3d &ppos) const {
64 return Utils::hadamard_division(ppos, m_semiaxes).norm2() <= 1;
65}
66
67double Ellipsoid::newton_term(const Utils::Vector3d &ppos,
68 const double &l) const {
69 Utils::Vector3d axpos, lax, lax2;
70 for (unsigned int i = 0; i < 3; i++) {
71 axpos[i] = Utils::sqr(m_semiaxes[i]) * Utils::sqr(ppos[i]);
72 lax[i] = l + Utils::sqr(m_semiaxes[i]);
73 lax2[i] = Utils::sqr(lax[i]);
74 }
75
76 return (axpos[0] * lax2[1] * lax2[2] + axpos[1] * lax2[2] * lax2[0] +
77 axpos[2] * lax2[0] * lax2[1] - lax2[0] * lax2[1] * lax2[2]) /
78 (2 * (axpos[0] * lax[1] * lax2[2] + axpos[1] * lax[2] * lax2[0] +
79 axpos[2] * lax[0] * lax2[1] + axpos[0] * lax2[1] * lax[2] +
80 axpos[1] * lax2[2] * lax[0] + axpos[2] * lax2[0] * lax[1] -
81 lax[0] * lax2[1] * lax2[2] - lax2[0] * lax[1] * lax2[2] -
82 lax2[0] * lax2[1] * lax[2]));
83}
84
85} // namespace Shapes
Vector implementation and trait types for boost qvm interoperability.
void calculate_dist(const Utils::Vector3d &pos, double &dist, Utils::Vector3d &vec) const override
Definition Ellipsoid.cpp:30
T norm() const
Definition Vector.hpp:139
DEVICE_QUALIFIER constexpr T sqr(T x)
Calculates the SQuaRe of x.
Definition sqr.hpp:28
auto hadamard_division(Vector< T, N > const &a, Vector< U, N > const &b)
Definition Vector.hpp:423