ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
Bibliography
[1]

M. Abramowitz and I. Stegun. Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Dover Publications Inc., New York, 9th edition, 1965.

[2]

Patrick Ahlrichs and Burkhard Dünweg. Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. The Journal of Chemical Physics, 111(17):8225–8239, 1999.

[3]

Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids. Oxford Science Publications. Oxford University Press, Oxford, 2nd edition, 2017.

[4]

Hans C. Andersen. Rattle: A ``velocity'' version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics, 52(1):24–34, 1983.

[5]

Axel Arnold and Christian Holm. MMM2D: A fast and accurate summation method for electrostatic interactions in 2D slab geometries. Computer Physics Communications, 148(3):327–348, 2002.

[6]

Adolfo J. Banchio and John F. Brady. Accelerated Stokesian dynamics: Brownian motion. Journal of Chemical Physics, 118(22):10323–10332, 2003.

[7]

John F. Brady and Georges Bossis. Stokesian dynamics. Annual Review of Fluid Mechanics, 20:111–157, 1988.

[8]

A. Bródka. Ewald summation method with electrostatic layer correction for interactions of point dipoles in slab geometry. Chemical Physics Letters, 400(1–3):62–67, 2004.

[9]

Juan J. Cerdà, Vincent Ballenegger, Olaf Lenz, and Christian Holm. P3M algorithm for dipolar interactions. The Journal of Chemical Physics, 129:234104, 2008.

[10]

Markus Deserno and Christian Holm. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. The Journal of Chemical Physics, 109:7678, 1998.

[11]

Markus Deserno and Christian Holm. How to mesh up Ewald sums. II. An accurate error estimate for the Particle-Particle-Particle-Mesh algorithm. The Journal of Chemical Physics, 109:7694, 1998.

[12]

Markus Deserno, Christian Holm, and Hans Jörg Limbach. How to mesh up Ewald sums. In R. Esser, P. Grassberger, J. Grotendorst, and M. Lewerenz, editors, Molecular Dynamics on Parallel Computers, pages 319–320. World Scientific, Singapore, 2000.

[13]

Markus Deserno. Counterion condensation for rigid linear polyelectrolytes. PhD thesis, Universität Mainz, February 2000.

[14]

Michael M. Dupin, Ian Halliday, Chris M. Care, Lyuba Alboul, and Lance L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E, 75(6):066707, 2007.

[15]

M. M. Dupin, I. Halliday, C. M. Care, and L. L. Munn. Lattice Boltzmann modelling of blood cell dynamics. International Journal of Computational Fluid Dynamics, 22(7):481–492, 2008.

[16]

L. Durlofsky, J. F. Brady, and G. Bossis. Dynamic simulation of hydrodynamically interacting particles. Journal of Fluid Mechanics, 180:21–49, 1987.

[17]

Ulrich Essmann, Lalith Perera, Max L. Berkowitz, Tom Darden, Hsing Lee, and Lee G. Pedersen. A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19):8577–8593, 1995.

[18]

P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369(3):253–287, 1921.

[19]

Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications, volume 1 of Computational Science. Academic Press, San Diego, 2nd edition, 2002.

[20]

J. G. Gay and B. J. Berne. Modification of the overlap potential to mimic a linear site-site potential. The Journal of Chemical Physics, 74(6):3316–3319, 1981.

[21]

G. Gompper and D. M. Kroll. Random surface discretizations and the renormalization of the bending rigidity. Journal de Physique I France, 6(10):1305–1320, 1996.

[22]

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. CRC Press, 1988.

[23]

Iveta Jancigová and Ivan Cimrák. Non-uniform force allocation for area preservation in spring network models. International Journal for Numerical Methods in Biomedical Engineering, 32(10):e02757, 2016.

[24]

Jiri Kolafa and John W. Perram. Cutoff errors in the Ewald summation formulae for point charge systems. Molecular Simulation, 9(5):351–368, 1992.

[25]

Timm Krüger. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear. Vieweg+Teubner Verlag, Wiesbaden, 2012.

[26]

Jonas Landsgesell, Christian Holm, and Jens Smiatek. Simulation of weak polyelectrolytes: A comparison between the constant pH and the reaction ensemble method. European Physical Journal Special Topics, 226(4):725–736, 2017.

[27]

Nicos S. Martys and Raymond D. Mountain. Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Physical Review E, 59(3):3733–3736, 1999.

[28]

Stephen Lloyd Baluk Moshier. Methods and Programs for Mathematical Functions. Ellis Horwood Series in Mathematics and Its Applications. Ellis Horwood, 1989.

[29]

G. P. Moss. Basic terminology of stereochemistry. Pure and Applied Chemistry, 68(12):2193–2222, 1996.

[30]

Martin Neumann. The dielectric constant of water. computer simulations with the MCY potential. The Journal of Chemical Physics, 82(12):5663–5672, 1985.

[31]

Igor P. Omelyan. On the numerical integration of motion for rigid polyatomics: The modified quaternion approach. Computers in Physics, 12(1):97–103, 1998.

[32]

François Panneton, Pierre L'Ecuyer, and Makoto Matsumoto. Improved long-period generators based on linear recurrences modulo 2. ACM Transactions on Mathematical Software, 32(1):1–16, 2006.

[33]

Steve J. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1–19, 1995.

[34]

Noëlle Pottier. Nonequilibrium Statistical Physics. Oxford Graduate Texts. Oxford University Press, 2010.

[35]

Christopher E. Reed and Wayne F. Reed. Monte Carlo study of titration of linear polyelectrolytes. The Journal of Chemical Physics, 96(2):1609–1620, 1992.

[36]

Tamar Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide, volume 21 of Interdisciplinary Applied Mathematics. Springer New York, New York, New York, USA, 2010.

[37]

W. R. Smith and B. Triska. The reaction ensemble method for the computer simulation of chemical and phase equilibria. I. Theory and basic examples. The Journal of Chemical Physics, 100(4):3019–3027, 1994.

[38]

T. Soddemann, B. Dünweg, and K. Kremer. Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Physical Review E, 68(4):046702, 2003.

[39]

Roland Sonnenschein. An improved algorithm for molecular dynamics simulation of rigid molecules. Journal of Computational Physics, 59(2):347–350, 1985.

[40]

William C. Swope and David M. Ferguson. Alternative expressions for energies and forces due to angle bending and torsional energy. Journal of Computational Chemistry, 13(5):585–594, 1992.

[41]

B. T. Thole. Molecular polarizabilities calculated with a modified dipole interaction. Chemical Physics, 59(3):341–350, 1981.

[42]

Ilario G. Tironi, René Sperb, Paul E. Smith, and Wilfred F. van Gunsteren. A generalized reaction field method for molecular-dynamics simulations. The Journal of Chemical Physics, 102(13):5451–5459, 1995.

[43]

Sandeep Tyagi, Mehmet Süzen, Marcello Sega, Marcia C. Barbosa, Sofia S. Kantorovich, and Christian Holm. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. The Journal of Chemical Physics, 132(15):154112, 2010.

[44]

Zuowei Wang and Christian Holm. Estimate of the cutoff errors in the Ewald summation for dipolar systems. The Journal of Chemical Physics, 115:6351–6359, 2001.

[45]

In-Chul Yeh and Max L. Berkowitz. Ewald summation for systems with slab geometry. Journal of Chemical Physics, 111(7):3155–3162, 1999.

[46]

Cha Zhang and Tsuhan Chen. Efficient feature extraction for 2D/3D objects in mesh representation. In Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), volume 3, pages 935–938, 2001.