ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
EKSpecies.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2021-2023 The ESPResSo project
3 *
4 * This file is part of ESPResSo.
5 *
6 * ESPResSo is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * ESPResSo is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19#include "config/config.hpp"
20
21#ifdef WALBERLA
22
23#include "EKSpecies.hpp"
26
28
29#include <boost/mpi.hpp>
30#include <boost/mpi/collectives/all_reduce.hpp>
31#include <boost/mpi/collectives/broadcast.hpp>
32
33#include <algorithm>
34#include <cassert>
35#include <functional>
36#include <memory>
37#include <optional>
38#include <sstream>
39#include <stdexcept>
40#include <string>
41#include <vector>
42
44
45std::unordered_map<std::string, int> const EKVTKHandle::obs_map = {
46 {"density", static_cast<int>(EKOutputVTK::density)},
47};
48
50 VariantMap const &parameters) {
51 if (method == "update_flux_boundary_from_shape") {
53 std::ranges::for_each(values, [this](double &v) { v *= m_conv_flux; });
54
55 m_instance->update_flux_boundary_from_shape(
56 get_value<std::vector<int>>(parameters, "raster"), values);
57 return {};
58 }
59 if (method == "update_density_boundary_from_shape") {
61 std::ranges::for_each(values, [this](double &v) { v *= m_conv_density; });
62 m_instance->update_density_boundary_from_shape(
63 get_value<std::vector<int>>(parameters, "raster"), values);
64 return {};
65 }
66 if (method == "clear_flux_boundaries") {
67 m_instance->clear_flux_boundaries();
68 return {};
69 }
70 if (method == "clear_density_boundaries") {
71 m_instance->clear_density_boundaries();
72 return {};
73 }
74 if (method == "save_checkpoint") {
75 auto const path = get_value<std::string>(parameters, "path");
76 auto const mode = get_value<int>(parameters, "mode");
77 save_checkpoint(path, mode);
78 return {};
79 }
80 if (method == "load_checkpoint") {
81 auto const path = get_value<std::string>(parameters, "path");
82 auto const mode = get_value<int>(parameters, "mode");
83 load_checkpoint(path, mode);
84 return {};
85 }
87}
88
90 auto const diffusion = get_value<double>(params, "diffusion");
91 auto const ext_efield = get_value<Utils::Vector3d>(params, "ext_efield");
92 auto const density = get_value<double>(params, "density");
93 auto const kT = get_value<double>(params, "kT");
96 auto const ek_density = density * m_conv_density;
97 auto const ek_kT = kT * m_conv_energy;
99 m_lattice->lattice(), ek_diffusion, ek_kT,
101 get_value<bool>(params, "advection"),
102 get_value<bool>(params, "friction_coupling"),
103 get_value<bool>(params, "single_precision"),
104 get_value_or<bool>(params, "thermalized", false),
105 static_cast<uint>(get_value_or<int>(params, "seed", 0)));
106 m_instance->ghost_communication();
107}
108
113 auto const agrid = get_value<double>(m_lattice->get_parameter("agrid"));
114 auto const density = get_value<double>(params, "density");
115 auto const kT = get_value<double>(params, "kT");
116 auto const tau = m_tau = get_value<double>(params, "tau");
117 auto const seed = get_value_or<int>(params, "seed", 0);
118 context()->parallel_try_catch([&]() {
119 if (get_value<bool>(params, "thermalized") and
120 not params.contains("seed")) {
121 throw std::invalid_argument(
122 "Parameter 'seed' is required for thermalized EKSpecies");
123 }
124 if (seed < 0) {
125 throw std::domain_error("Parameter 'seed' must be >= 0");
126 }
127 if (tau <= 0.) {
128 throw std::domain_error("Parameter 'tau' must be > 0");
129 }
130 if (kT < 0.) {
131 throw std::domain_error("Parameter 'kT' must be >= 0");
132 }
133 if (density < 0.) {
134 throw std::domain_error("Parameter 'density' must be >= 0");
135 }
136 m_conv_energy = Utils::int_pow<2>(tau) / Utils::int_pow<2>(agrid);
137 m_conv_diffusion = tau / Utils::int_pow<2>(agrid);
138 m_conv_ext_efield = Utils::int_pow<2>(tau) / agrid;
139 m_conv_density = Utils::int_pow<3>(agrid);
140 m_conv_flux = tau * Utils::int_pow<2>(agrid);
143 for (auto &vtk : m_vtk_writers) {
144 vtk->attach_to_lattice(m_instance, get_latice_to_md_units_conversion());
145 }
146 });
147}
148
149void EKSpecies::load_checkpoint(std::string const &filename, int mode) {
150 auto &ek_obj = *m_instance;
151
152 auto const read_metadata = [&ek_obj](CheckpointFile &cpfile) {
153 auto const expected_grid_size = ek_obj.get_lattice().get_grid_dimensions();
157 std::stringstream message;
158 message << "grid dimensions mismatch, read [" << read_grid_size << "], "
159 << "expected [" << expected_grid_size << "].";
160 throw std::runtime_error(message.str());
161 }
162 };
163
164 auto const read_data = [&ek_obj](CheckpointFile &cpfile) {
165 auto const grid_size = ek_obj.get_lattice().get_grid_dimensions();
166 auto const i_max = grid_size[0];
167 auto const j_max = grid_size[1];
168 auto const k_max = grid_size[2];
170 for (int i = 0; i < i_max; i++) {
171 for (int j = 0; j < j_max; j++) {
172 for (int k = 0; k < k_max; k++) {
173 auto const ind = Utils::Vector3i{{i, j, k}};
174 cpfile.read(cpnode.density);
175 cpfile.read(cpnode.is_boundary_density);
176 if (cpnode.is_boundary_density) {
177 cpfile.read(cpnode.density_boundary);
178 }
179 cpfile.read(cpnode.is_boundary_flux);
180 if (cpnode.is_boundary_flux) {
181 cpfile.read(cpnode.flux_boundary);
182 }
183 ek_obj.set_node_density(ind, cpnode.density);
184 if (cpnode.is_boundary_density) {
185 ek_obj.set_node_density_boundary(ind, cpnode.density_boundary);
186 }
187 if (cpnode.is_boundary_flux) {
188 ek_obj.set_node_flux_boundary(ind, cpnode.flux_boundary);
189 }
190 }
191 }
192 }
193 };
194
195 auto const on_success = [&ek_obj]() { ek_obj.ghost_communication(); };
196
199}
200
201void EKSpecies::save_checkpoint(std::string const &filename, int mode) {
202 auto &ek_obj = *m_instance;
203
204 auto const write_metadata = [&ek_obj,
205 mode](std::shared_ptr<CheckpointFile> cpfile_ptr,
206 Context const &context) {
207 auto const grid_size = ek_obj.get_lattice().get_grid_dimensions();
208 if (context.is_head_node()) {
209 cpfile_ptr->write(grid_size);
211 }
212 };
213
214 auto const on_failure = [](std::shared_ptr<CheckpointFile> const &,
215 Context const &context) {
216 if (context.is_head_node()) {
217 auto failure = true;
218 boost::mpi::broadcast(context.get_comm(), failure, 0);
219 }
220 };
221
222 auto const write_data = [&ek_obj,
223 mode](std::shared_ptr<CheckpointFile> cpfile_ptr,
224 Context const &context) {
225 auto const get_node_checkpoint =
226 [&](Utils::Vector3i const &ind) -> std::optional<EKWalberlaNodeState> {
227 auto const density = ek_obj.get_node_density(ind);
228 auto const is_b_d = ek_obj.get_node_is_density_boundary(ind);
229 auto const dens_b = ek_obj.get_node_density_at_boundary(ind);
230 auto const is_b_f = ek_obj.get_node_is_flux_boundary(ind);
231 auto const flux_b = ek_obj.get_node_flux_at_boundary(ind);
233 ((*is_b_d) ? dens_b.has_value() : true) and
234 ((*is_b_f) ? flux_b.has_value() : true)) {
237 cpnode.is_boundary_density = *is_b_d;
238 if (*is_b_d) {
239 cpnode.density_boundary = *dens_b;
240 }
241 cpnode.is_boundary_flux = *is_b_f;
242 if (*is_b_f) {
243 cpnode.flux_boundary = *flux_b;
244 }
245 return cpnode;
246 }
247 return std::nullopt;
248 };
249
250 auto failure = false;
251 auto const &comm = context.get_comm();
252 auto const is_head_node = context.is_head_node();
253 auto const unit_test_mode = (mode != static_cast<int>(CptMode::ascii)) and
254 (mode != static_cast<int>(CptMode::binary));
255 auto const grid_size = ek_obj.get_lattice().get_grid_dimensions();
256 auto const i_max = grid_size[0];
257 auto const j_max = grid_size[1];
258 auto const k_max = grid_size[2];
260 for (int i = 0; i < i_max; i++) {
261 for (int j = 0; j < j_max; j++) {
262 for (int k = 0; k < k_max; k++) {
263 auto const ind = Utils::Vector3i{{i, j, k}};
264 auto const result = get_node_checkpoint(ind);
265 if (!unit_test_mode) {
266 assert(1 == boost::mpi::all_reduce(comm, static_cast<int>(!!result),
267 std::plus<>()) &&
268 "Incorrect number of return values");
269 }
270 if (is_head_node) {
271 if (result) {
272 cpnode = *result;
273 } else {
274 comm.recv(boost::mpi::any_source, 42, cpnode);
275 }
276 auto &cpfile = *cpfile_ptr;
277 cpfile.write(cpnode.density);
278 cpfile.write(cpnode.is_boundary_density);
279 if (cpnode.is_boundary_density) {
280 cpfile.write(cpnode.density_boundary);
281 }
282 cpfile.write(cpnode.is_boundary_flux);
283 if (cpnode.is_boundary_flux) {
284 cpfile.write(cpnode.flux_boundary);
285 }
286 boost::mpi::broadcast(comm, failure, 0);
287 } else {
288 if (result) {
289 comm.send(0, 42, *result);
290 }
291 boost::mpi::broadcast(comm, failure, 0);
292 if (failure) {
293 return;
294 }
295 }
296 }
297 }
298 }
299 };
300
303}
304
305} // namespace ScriptInterface::walberla
306
307#endif // WALBERLA
virtual void parallel_try_catch(std::function< void()> const &cb) const =0
virtual bool is_head_node() const =0
virtual boost::mpi::communicator const & get_comm() const =0
Context * context() const
Responsible context.
void make_instance(VariantMap const &params) override
Definition EKSpecies.cpp:89
Variant do_call_method(std::string const &method, VariantMap const &parameters) override
Definition EKSpecies.cpp:49
::LatticeModel::units_map get_latice_to_md_units_conversion() const override
void do_construct(VariantMap const &params) override
Variant do_call_method(std::string const &method_name, VariantMap const &params) override
This file contains the defaults for ESPResSo.
void save_checkpoint_common(Context const &context, std::string const classname, std::string const &filename, int mode, F1 const write_metadata, F2 const write_data, F3 const on_failure)
void unit_test_handle(int mode)
Inject code for unit tests.
void load_checkpoint_common(Context const &context, std::string const classname, std::string const &filename, int mode, F1 const read_metadata, F2 const read_data, F3 const on_success)
T get_value(Variant const &v)
Extract value of specific type T from a Variant.
std::unordered_map< std::string, Variant > VariantMap
Definition Variant.hpp:69
boost::make_recursive_variant< None, bool, int, std::size_t, double, std::string, ObjectRef, Utils::Vector3b, Utils::Vector3i, Utils::Vector2d, Utils::Vector3d, Utils::Vector4d, std::vector< int >, std::vector< double >, std::vector< boost::recursive_variant_ >, std::unordered_map< int, boost::recursive_variant_ >, std::unordered_map< std::string, boost::recursive_variant_ > >::type Variant
Possible types for parameters.
Definition Variant.hpp:67
static FUNC_PREFIX double *RESTRICT int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const int64_t const double grid_size
std::shared_ptr< EKinWalberlaBase > new_ek_walberla(std::shared_ptr< LatticeWalberla > const &lattice, double diffusion, double kT, double valency, Utils::Vector3d ext_efield, double density, bool advection, bool friction_coupling, bool single_precision, bool thermalized, unsigned int seed)
static SteepestDescentParameters params
Currently active steepest descent instance.
Checkpoint data for a EK node.