ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
Correlator.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2010-2022 The ESPResSo project
3 *
4 * This file is part of ESPResSo.
5 *
6 * ESPResSo is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * ESPResSo is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19#include "Correlator.hpp"
20
21#include <utils/Vector.hpp>
22#include <utils/math/sqr.hpp>
24
25#include <boost/archive/binary_iarchive.hpp>
26#include <boost/archive/binary_oarchive.hpp>
27#include <boost/iostreams/device/array.hpp>
28#include <boost/iostreams/stream.hpp>
29#include <boost/serialization/string.hpp>
30#include <boost/serialization/vector.hpp>
31
32#include <algorithm>
33#include <array>
34#include <cassert>
35#include <cmath>
36#include <cstddef>
37#include <functional>
38#include <numeric>
39#include <sstream>
40#include <stdexcept>
41#include <string>
42#include <vector>
43
44namespace {
45int min(int i, unsigned int j) { return std::min(i, static_cast<int>(j)); }
46} // namespace
47
48namespace Accumulators {
49/** Compress computing arithmetic mean: A_compressed=(A1+A2)/2 */
50std::vector<double> compress_linear(std::vector<double> const &A1,
51 std::vector<double> const &A2) {
52 assert(A1.size() == A2.size());
53 std::vector<double> A_compressed(A1.size());
54
55 std::ranges::transform(A1, A2, A_compressed.begin(),
56 [](double a, double b) { return 0.5 * (a + b); });
57
58 return A_compressed;
59}
60
61/** Compress discarding the 1st argument and return the 2nd */
62std::vector<double> compress_discard1(std::vector<double> const &A1,
63 std::vector<double> const &A2) {
64 assert(A1.size() == A2.size());
65 std::vector<double> A_compressed(A2);
66 return A_compressed;
67}
68
69/** Compress discarding the 2nd argument and return the 1st */
70std::vector<double> compress_discard2(std::vector<double> const &A1,
71 std::vector<double> const &A2) {
72 assert(A1.size() == A2.size());
73 std::vector<double> A_compressed(A1);
74 return A_compressed;
75}
76
77std::vector<double> scalar_product(std::vector<double> const &A,
78 std::vector<double> const &B,
79 Utils::Vector3d const &) {
80 if (A.size() != B.size()) {
81 throw std::runtime_error(
82 "Error in scalar product: The vector sizes do not match");
83 }
84
85 auto const result = std::inner_product(A.begin(), A.end(), B.begin(), 0.0);
86 return {result};
87}
88
89std::vector<double> componentwise_product(std::vector<double> const &A,
90 std::vector<double> const &B,
91 Utils::Vector3d const &) {
92 std::vector<double> C(A.size());
93 if (A.size() != B.size()) {
94 throw std::runtime_error(
95 "Error in componentwise product: The vector sizes do not match");
96 }
97
98 std::ranges::transform(A, B, C.begin(), std::multiplies<>());
99
100 return C;
101}
102
103std::vector<double> tensor_product(std::vector<double> const &A,
104 std::vector<double> const &B,
105 Utils::Vector3d const &) {
106 std::vector<double> C(A.size() * B.size());
107 auto C_it = C.begin();
108
109 for (double a : A) {
110 for (double b : B) {
111 *(C_it++) = a * b;
112 }
113 }
114
115 return C;
116}
117
118std::vector<double> square_distance_componentwise(std::vector<double> const &A,
119 std::vector<double> const &B,
120 Utils::Vector3d const &) {
121 if (A.size() != B.size()) {
122 throw std::runtime_error(
123 "Error in square distance componentwise: The vector sizes do not "
124 "match.");
125 }
126
127 std::vector<double> C(A.size());
128
129 std::ranges::transform(A, B, C.begin(), [](double a, double b) -> double {
130 return Utils::sqr(a - b);
131 });
132
133 return C;
134}
135
136// note: the argument name wsquare denotes that its value is w^2 while the user
137// sets w
138std::vector<double> fcs_acf(std::vector<double> const &A,
139 std::vector<double> const &B,
140 Utils::Vector3d const &wsquare) {
141 if (A.size() != B.size()) {
142 throw std::runtime_error(
143 "Error in fcs_acf: The vector sizes do not match.");
144 }
145
146 auto const C_size = A.size() / 3u;
147 assert(3u * C_size == A.size());
148
149 std::vector<double> C{};
150 C.reserve(C_size);
151
152 for (std::size_t i = 0u; i < C_size; i++) {
153 auto acc = 0.;
154 for (std::size_t j = 0u; j < 3u; j++) {
155 auto const a = A[3u * i + j];
156 auto const b = B[3u * i + j];
157 acc -= Utils::sqr(a - b) / wsquare[j];
158 }
159 C.emplace_back(std::exp(acc));
160 }
161
162 return C;
163}
164
165void Correlator::initialize_operations() {
166 // Class members are assigned via the initializer list
167
168 if (m_tau_lin == 1) { // use the default
169 m_tau_lin = static_cast<int>(std::ceil(m_tau_max / m_dt));
170 m_tau_lin += m_tau_lin % 2;
171 }
172
173 if (m_tau_lin < 2) {
174 throw std::runtime_error("tau_lin must be >= 2");
175 }
176
177 if (m_tau_lin % 2) {
178 throw std::runtime_error("tau_lin must be divisible by 2");
179 }
180
181 if (m_tau_max <= m_dt) {
182 throw std::runtime_error("tau_max must be >= delta_t (delta_N too large)");
183 }
184 // set hierarchy depth which can accommodate at least m_tau_max
185 if ((m_tau_max / m_dt) < m_tau_lin) {
186 m_hierarchy_depth = 1;
187 } else {
188 auto const operand = (m_tau_max / m_dt) / double(m_tau_lin - 1);
189 assert(operand > 0.);
190 m_hierarchy_depth = static_cast<int>(std::ceil(1. + std::log2(operand)));
191 }
192
193 assert(A_obs);
194 assert(B_obs);
195 dim_A = A_obs->n_values();
196 dim_B = B_obs->n_values();
197
198 if (dim_A == 0u) {
199 throw std::runtime_error("dimension of first observable has to be >= 1");
200 }
201 if (dim_B == 0u) {
202 throw std::runtime_error("dimension of second observable has to be >= 1");
203 }
204
205 // choose the correlation operation
206 if (corr_operation_name == "componentwise_product") {
207 m_dim_corr = dim_A;
208 m_shape = A_obs->shape();
209 corr_operation = &componentwise_product;
210 m_correlation_args = Utils::Vector3d{0, 0, 0};
211 } else if (corr_operation_name == "tensor_product") {
212 m_dim_corr = dim_A * dim_B;
213 m_shape.clear();
214 m_shape.emplace_back(dim_A);
215 m_shape.emplace_back(dim_B);
216 corr_operation = &tensor_product;
217 m_correlation_args = Utils::Vector3d{0, 0, 0};
218 } else if (corr_operation_name == "square_distance_componentwise") {
219 m_dim_corr = dim_A;
220 m_shape = A_obs->shape();
221 corr_operation = &square_distance_componentwise;
222 m_correlation_args = Utils::Vector3d{0, 0, 0};
223 } else if (corr_operation_name == "fcs_acf") {
224 // note: user provides w=(wx,wy,wz) but we want to use
225 // wsquare=(wx^2,wy^2,wz^2)
226 if (not(m_correlation_args_input > Utils::Vector3d::broadcast(0.))) {
227 throw std::runtime_error("missing parameter for fcs_acf: w_x w_y w_z");
228 }
229 m_correlation_args = Utils::hadamard_product(m_correlation_args_input,
230 m_correlation_args_input);
231 if (dim_A % 3u)
232 throw std::runtime_error("dimA must be divisible by 3 for fcs_acf");
233 m_dim_corr = dim_A / 3u;
234 m_shape = A_obs->shape();
235 if (m_shape.back() != 3u)
236 throw std::runtime_error(
237 "the last dimension of dimA must be 3 for fcs_acf");
238 m_shape.pop_back();
239 corr_operation = &fcs_acf;
240 } else if (corr_operation_name == "scalar_product") {
241 m_dim_corr = 1u;
242 m_shape.clear();
243 m_shape.emplace_back(1u);
244 corr_operation = &scalar_product;
245 m_correlation_args = Utils::Vector3d{0, 0, 0};
246 } else {
247 throw std::invalid_argument("correlation operation '" +
248 corr_operation_name + "' not implemented");
249 }
250
251 // Choose the compression function
252 if (compressA_name == "discard2") {
253 compressA = &compress_discard2;
254 } else if (compressA_name == "discard1") {
255 compressA = &compress_discard1;
256 } else if (compressA_name == "linear") {
257 compressA = &compress_linear;
258 } else {
259 throw std::invalid_argument("unknown compression method '" +
260 compressA_name + "' for first observable");
261 }
262
263 if (compressB_name == "discard2") {
264 compressB = &compress_discard2;
265 } else if (compressB_name == "discard1") {
266 compressB = &compress_discard1;
267 } else if (compressB_name == "linear") {
268 compressB = &compress_linear;
269 } else {
270 throw std::invalid_argument("unknown compression method '" +
271 compressB_name + "' for second observable");
272 }
273}
274
275void Correlator::initialize_buffers() {
276 using index_type = decltype(result)::index;
277
278 A.resize(std::array<int, 2>{{m_hierarchy_depth, m_tau_lin + 1}});
279 std::fill_n(A.data(), A.num_elements(), std::vector<double>(dim_A, 0));
280 B.resize(std::array<int, 2>{{m_hierarchy_depth, m_tau_lin + 1}});
281 std::fill_n(B.data(), B.num_elements(), std::vector<double>(dim_B, 0));
282
283 n_data = 0;
284 A_accumulated_average = std::vector<double>(dim_A, 0);
285 B_accumulated_average = std::vector<double>(dim_B, 0);
286
287 auto const n_result = n_values();
288 n_sweeps = std::vector<std::size_t>(n_result, 0);
289 n_vals = std::vector<long>(m_hierarchy_depth, 0);
290
291 result.resize(std::array<std::size_t, 2>{{n_result, m_dim_corr}});
292 for (index_type i = 0; i < static_cast<index_type>(n_result); i++) {
293 for (index_type j = 0; j < static_cast<index_type>(m_dim_corr); j++) {
294 result[i][j] = 0.;
295 }
296 }
297
298 newest = std::vector<long>(m_hierarchy_depth, m_tau_lin);
299
300 tau.resize(n_result);
301 for (int i = 0; i < m_tau_lin + 1; i++) {
302 tau[i] = i;
303 }
304
305 for (int j = 1; j < m_hierarchy_depth; j++) {
306 for (int k = 0; k < m_tau_lin / 2; k++) {
307 tau[m_tau_lin + 1 + (j - 1) * m_tau_lin / 2 + k] =
308 (k + (m_tau_lin / 2) + 1) * (1 << j);
309 }
310 }
311}
312
313void Correlator::update(boost::mpi::communicator const &comm) {
314 if (finalized) {
315 throw std::runtime_error(
316 "No data can be added after finalize() was called.");
317 }
318
319 if (comm.rank() != 0) {
320 // worker nodes just need to update the observables and exit
321 A_obs->operator()(comm);
322 if (A_obs != B_obs) {
323 B_obs->operator()(comm);
324 }
325
326 return;
327 }
328
329 // We must now go through the hierarchy and make sure there is space for the
330 // new datapoint. For every hierarchy level we have to decide if it is
331 // necessary to move something
332 int highest_level_to_compress = -1;
333
334 t++;
335
336 // Let's find out how far we have to go back in the hierarchy to make space
337 // for the new value
338 {
339 auto const max_depth = m_hierarchy_depth - 1;
340 int i = 0;
341 while (true) {
342 if (i >= max_depth or n_vals[i] <= m_tau_lin) {
343 break;
344 }
345 auto const modulo = 1 << (i + 1);
346 auto const remainder = (t - (m_tau_lin + 1) * (modulo - 1) - 1) % modulo;
347 if (remainder != 0) {
348 break;
349 }
350 highest_level_to_compress += 1;
351 i++;
352 }
353 }
354
355 // Now we know we must make space on the levels 0..highest_level_to_compress
356 // Now let's compress the data level by level.
357
358 for (int i = highest_level_to_compress; i >= 0; i--) {
359 // We increase the index indicating the newest on level i+1 by one (plus
360 // folding)
361 newest[i + 1] = (newest[i + 1] + 1) % (m_tau_lin + 1);
362 n_vals[i + 1] += 1;
363 A[i + 1][newest[i + 1]] =
364 (*compressA)(A[i][(newest[i] + 1) % (m_tau_lin + 1)],
365 A[i][(newest[i] + 2) % (m_tau_lin + 1)]);
366 B[i + 1][newest[i + 1]] =
367 (*compressB)(B[i][(newest[i] + 1) % (m_tau_lin + 1)],
368 B[i][(newest[i] + 2) % (m_tau_lin + 1)]);
369 }
370
371 newest[0] = (newest[0] + 1) % (m_tau_lin + 1);
372 n_vals[0]++;
373
374 A[0][newest[0]] = A_obs->operator()(comm);
375 if (A_obs != B_obs) {
376 B[0][newest[0]] = B_obs->operator()(comm);
377 } else {
378 B[0][newest[0]] = A[0][newest[0]];
379 }
380
381 // Now we update the cumulated averages and variances of A and B
382 n_data++;
383 for (std::size_t k = 0; k < dim_A; k++) {
384 A_accumulated_average[k] += A[0][newest[0]][k];
385 }
386
387 for (std::size_t k = 0; k < dim_B; k++) {
388 B_accumulated_average[k] += B[0][newest[0]][k];
389 }
390
391 using index_type = decltype(result)::index;
392 // Now update the lowest level correlation estimates
393 for (long j = 0; j < min(m_tau_lin + 1, n_vals[0]); j++) {
394 auto const index_new = newest[0];
395 auto const index_old = (newest[0] - j + m_tau_lin + 1) % (m_tau_lin + 1);
396 auto const temp =
397 (corr_operation)(A[0][index_old], B[0][index_new], m_correlation_args);
398 assert(temp.size() == m_dim_corr);
399
400 n_sweeps[j]++;
401 for (index_type k = 0; k < static_cast<index_type>(m_dim_corr); k++) {
402 result[j][k] += temp[k];
403 }
404 }
405 // Now for the higher ones
406 for (int i = 1; i < highest_level_to_compress + 2; i++) {
407 for (long j = (m_tau_lin + 1) / 2 + 1; j < min(m_tau_lin + 1, n_vals[i]);
408 j++) {
409 auto const index_new = newest[i];
410 auto const index_old = (newest[i] - j + m_tau_lin + 1) % (m_tau_lin + 1);
411 auto const index_res =
412 m_tau_lin + (i - 1) * m_tau_lin / 2 + (j - m_tau_lin / 2 + 1) - 1;
413 auto const temp = (corr_operation)(A[i][index_old], B[i][index_new],
414 m_correlation_args);
415 assert(temp.size() == m_dim_corr);
416
417 n_sweeps[index_res]++;
418 for (index_type k = 0; k < static_cast<index_type>(m_dim_corr); k++) {
419 result[index_res][k] += temp[k];
420 }
421 }
422 }
423}
424
425int Correlator::finalize(boost::mpi::communicator const &comm) {
426 using index_type = decltype(result)::index;
427 if (finalized) {
428 throw std::runtime_error("Correlator::finalize() can only be called once.");
429 }
430 // We must now go through the hierarchy and make sure there is space for the
431 // new datapoint. For every hierarchy level we have to decide if it is
432 // necessary to move something
433
434 // mark the correlation as finalized
435 finalized = true;
436
437 // worker nodes don't need to do anything
438 if (comm.rank() != 0) {
439 return 0;
440 }
441
442 for (int ll = 0; ll < m_hierarchy_depth - 1; ll++) {
443 long vals_ll; // number of values remaining in the lowest level
444 if (n_vals[ll] > m_tau_lin + 1)
445 vals_ll = m_tau_lin + n_vals[ll] % 2;
446 else
447 vals_ll = n_vals[ll];
448
449 while (vals_ll) {
450 // Check, if we will want to push the value from the lowest level
451 auto highest_level_to_compress = (vals_ll % 2) ? ll : -1;
452
453 // Let's find out how far we have to go back in the hierarchy to make
454 // space for the new value
455 {
456 auto const max_depth = m_hierarchy_depth - 1;
457 int i = ll + 1; // lowest level for which to check for compression
458 while (highest_level_to_compress > -1) {
459 if (i >= max_depth or n_vals[i] % 2 == 0 or n_vals[i] <= m_tau_lin) {
460 break;
461 }
462 highest_level_to_compress += 1;
463 i++;
464 }
465 }
466 vals_ll -= 1;
467
468 // Now we know we must make space on the levels
469 // 0..highest_level_to_compress
470 // Now let's compress the data level by level.
471
472 for (int i = highest_level_to_compress; i >= ll; i--) {
473 // We increase the index indicating the newest on level i+1 by one (plus
474 // folding)
475 newest[i + 1] = (newest[i + 1] + 1) % (m_tau_lin + 1);
476 n_vals[i + 1] += 1;
477
478 (*compressA)(A[i][(newest[i] + 1) % (m_tau_lin + 1)],
479 A[i][(newest[i] + 2) % (m_tau_lin + 1)]);
480 (*compressB)(B[i][(newest[i] + 1) % (m_tau_lin + 1)],
481 B[i][(newest[i] + 2) % (m_tau_lin + 1)]);
482 }
483 newest[ll] = (newest[ll] + 1) % (m_tau_lin + 1);
484
485 // We only need to update correlation estimates for the higher levels
486 for (int i = ll + 1; i < highest_level_to_compress + 2; i++) {
487 for (long j = (m_tau_lin + 1) / 2 + 1;
488 j < min(m_tau_lin + 1, n_vals[i]); j++) {
489 auto const index_new = newest[i];
490 auto const index_old =
491 (newest[i] - j + m_tau_lin + 1) % (m_tau_lin + 1);
492 auto const index_res =
493 m_tau_lin + (i - 1) * m_tau_lin / 2 + (j - m_tau_lin / 2 + 1) - 1;
494
495 auto const temp = (corr_operation)(A[i][index_old], B[i][index_new],
496 m_correlation_args);
497 assert(temp.size() == m_dim_corr);
498
499 n_sweeps[index_res]++;
500 for (index_type k = 0; k < static_cast<index_type>(m_dim_corr); k++) {
501 result[index_res][k] += temp[k];
502 }
503 }
504 }
505 }
506 }
507 return 0;
508}
509
510std::vector<double> Correlator::get_correlation() {
511 using index_type = decltype(result)::index;
512 auto const n_result = n_values();
513 std::vector<double> res(n_result * m_dim_corr);
514
515 for (std::size_t i = 0; i < n_result; i++) {
516 auto const index = static_cast<index_type>(m_dim_corr * i);
517 for (index_type k = 0; k < static_cast<index_type>(m_dim_corr); k++) {
518 if (n_sweeps[i]) {
519 res[index + k] = result[static_cast<index_type>(i)][k] /
520 static_cast<double>(n_sweeps[i]);
521 }
522 }
523 }
524 return res;
525}
526
527std::vector<double> Correlator::get_lag_times() const {
528 std::vector<double> res(n_values());
529 std::ranges::transform(tau, res.begin(),
530 [dt = m_dt](auto const &a) { return a * dt; });
531 return res;
532}
533
535 std::stringstream ss;
536 boost::archive::binary_oarchive oa(ss);
537
538 oa << t;
539 oa << m_dt;
540 oa << m_shape;
541 oa << m_correlation_args_input;
542 oa << A;
543 oa << B;
544 oa << result;
545 oa << n_sweeps;
546 oa << n_vals;
547 oa << newest;
548 oa << A_accumulated_average;
549 oa << B_accumulated_average;
550 oa << n_data;
551
552 return ss.str();
553}
554
555void Correlator::set_internal_state(std::string const &state) {
556 namespace iostreams = boost::iostreams;
557 iostreams::array_source src(state.data(), state.size());
558 iostreams::stream<iostreams::array_source> ss(src);
559 boost::archive::binary_iarchive ia(ss);
560
561 ia >> t;
562 ia >> m_dt;
563 ia >> m_shape;
564 ia >> m_correlation_args_input;
565 ia >> A;
566 ia >> B;
567 ia >> result;
568 ia >> n_sweeps;
569 ia >> n_vals;
570 ia >> newest;
571 ia >> A_accumulated_average;
572 ia >> B_accumulated_average;
573 ia >> n_data;
574 initialize_operations();
575 m_system = nullptr;
576}
577
578} // namespace Accumulators
Vector implementation and trait types for boost qvm interoperability.
void const * m_system
for bookkeeping purposes
std::string get_internal_state() const final
void set_internal_state(std::string const &) final
std::vector< double > get_lag_times() const
int finalize(boost::mpi::communicator const &comm)
At the end of data collection, go through the whole hierarchy and correlate data left there.
std::vector< double > get_correlation()
Return correlation result.
void update(boost::mpi::communicator const &comm) override
The function to process a new datapoint of A and B.
static DEVICE_QUALIFIER constexpr Vector< T, N > broadcast(typename Base::value_type const &value) noexcept
Create a vector that has all entries set to the same value.
Definition Vector.hpp:111
std::vector< double > componentwise_product(std::vector< double > const &A, std::vector< double > const &B, Utils::Vector3d const &)
std::vector< double > tensor_product(std::vector< double > const &A, std::vector< double > const &B, Utils::Vector3d const &)
std::vector< double > compress_linear(std::vector< double > const &A1, std::vector< double > const &A2)
Compress computing arithmetic mean: A_compressed=(A1+A2)/2.
std::vector< double > scalar_product(std::vector< double > const &A, std::vector< double > const &B, Utils::Vector3d const &)
std::vector< double > compress_discard1(std::vector< double > const &A1, std::vector< double > const &A2)
Compress discarding the 1st argument and return the 2nd.
std::vector< double > compress_discard2(std::vector< double > const &A1, std::vector< double > const &A2)
Compress discarding the 2nd argument and return the 1st.
std::vector< double > fcs_acf(std::vector< double > const &A, std::vector< double > const &B, Utils::Vector3d const &wsquare)
std::vector< double > square_distance_componentwise(std::vector< double > const &A, std::vector< double > const &B, Utils::Vector3d const &)
DEVICE_QUALIFIER constexpr T sqr(T x)
Calculates the SQuaRe of x.
Definition sqr.hpp:28
auto hadamard_product(Vector< T, N > const &a, Vector< U, N > const &b)
Definition Vector.hpp:380
int min(int i, unsigned int j)