ESPResSo
Extensible Simulation Package for Research on Soft Matter Systems
Loading...
Searching...
No Matches
energy.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2010-2022 The ESPResSo project
3 * Copyright (C) 2002,2003,2004,2005,2006,2007,2008,2009,2010
4 * Max-Planck-Institute for Polymer Research, Theory Group
5 *
6 * This file is part of ESPResSo.
7 *
8 * ESPResSo is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * ESPResSo is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include "BoxGeometry.hpp"
23#include "Observable_stat.hpp"
25#include "constraints.hpp"
26#include "energy_inline.hpp"
28#include "short_range_loop.hpp"
29#include "system/System.hpp"
30
33
34#include <utils/Span.hpp>
35
36#include <memory>
37
38namespace System {
39
40std::shared_ptr<Observable_stat> System::calculate_energy() {
41
42 auto obs_energy_ptr = std::make_shared<Observable_stat>(
43 1ul, static_cast<std::size_t>(::bonded_ia_params.get_next_key()),
44 nonbonded_ias->get_max_seen_particle_type());
45
46 if (long_range_interactions_sanity_checks()) {
47 return obs_energy_ptr;
48 }
49
50 auto &obs_energy = *obs_energy_ptr;
51#if defined(CUDA) and (defined(ELECTROSTATICS) or defined(DIPOLES))
52 gpu.clear_energy_on_device();
53 gpu.update();
54#endif
55 on_observable_calc();
56
57 auto const local_parts = cell_structure->local_particles();
58
59 for (auto const &p : local_parts) {
60 obs_energy.kinetic[0] += calc_kinetic_energy(p);
61 }
62
63 auto const coulomb_kernel = coulomb.pair_energy_kernel();
64 auto const dipoles_kernel = dipoles.pair_energy_kernel();
65
67 [this, coulomb_kernel_ptr = get_ptr(coulomb_kernel), &obs_energy](
68 Particle const &p1, int bond_id, Utils::Span<Particle *> partners) {
69 auto const &iaparams = *bonded_ia_params.at(bond_id);
70 auto const result = calc_bonded_energy(iaparams, p1, partners, *box_geo,
71 coulomb_kernel_ptr);
72 if (result) {
73 obs_energy.bonded_contribution(bond_id)[0] += result.get();
74 return false;
75 }
76 return true;
77 },
78 [coulomb_kernel_ptr = get_ptr(coulomb_kernel),
79 dipoles_kernel_ptr = get_ptr(dipoles_kernel), this,
80 &obs_energy](Particle const &p1, Particle const &p2, Distance const &d) {
81 auto const &ia_params =
82 nonbonded_ias->get_ia_param(p1.type(), p2.type());
83 add_non_bonded_pair_energy(p1, p2, d.vec21, sqrt(d.dist2), d.dist2,
84 ia_params, coulomb_kernel_ptr,
85 dipoles_kernel_ptr, obs_energy);
86 },
87 *cell_structure, maximal_cutoff(), maximal_cutoff_bonded());
88
89#ifdef ELECTROSTATICS
90 /* calculate k-space part of electrostatic interaction. */
91 obs_energy.coulomb[1] = coulomb.calc_energy_long_range(local_parts);
92#endif
93
94#ifdef DIPOLES
95 /* calculate k-space part of magnetostatic interaction. */
96 obs_energy.dipolar[1] = dipoles.calc_energy_long_range(local_parts);
97#endif
98
99 Constraints::constraints.add_energy(*box_geo, local_parts, get_sim_time(),
100 obs_energy);
101
102#if defined(CUDA) and (defined(ELECTROSTATICS) or defined(DIPOLES))
103 auto const energy_host = gpu.copy_energy_to_host();
104 if (!obs_energy.coulomb.empty())
105 obs_energy.coulomb[1] += static_cast<double>(energy_host.coulomb);
106 if (!obs_energy.dipolar.empty())
107 obs_energy.dipolar[1] += static_cast<double>(energy_host.dipolar);
108#endif
109
110 obs_energy.mpi_reduce();
111 return obs_energy_ptr;
112 // NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks)
113}
114
116 if (cell_structure->get_resort_particles()) {
117 cell_structure->update_ghosts_and_resort_particle(get_global_ghost_flags());
118 }
119
120 auto ret = 0.0;
121 if (auto const p = cell_structure->get_local_particle(pid)) {
122 auto const coulomb_kernel = coulomb.pair_energy_kernel();
123 auto kernel = [coulomb_kernel_ptr = get_ptr(coulomb_kernel), &ret,
124 this](Particle const &p, Particle const &p1,
125 Utils::Vector3d const &vec) {
126#ifdef EXCLUSIONS
127 if (not do_nonbonded(p, p1))
128 return;
129#endif
130 auto const &ia_params = nonbonded_ias->get_ia_param(p.type(), p1.type());
131 // Add energy for current particle pair to result
132 ret += calc_non_bonded_pair_energy(p, p1, ia_params, vec, vec.norm(),
133 coulomb_kernel_ptr);
134 };
135 cell_structure->run_on_particle_short_range_neighbors(*p, kernel);
136 }
137 return ret;
138}
139
140#ifdef DIPOLE_FIELD_TRACKING
142 dipoles.calc_long_range_field(cell_structure->local_particles());
143}
144#endif
145
146} // namespace System
double maximal_cutoff_bonded()
Calculate the maximal cutoff of bonded interactions, required to determine the cell size for communic...
BondedInteractionsMap bonded_ia_params
Field containing the parameters of the bonded ia types.
mapped_type at(key_type const &key) const
double particle_short_range_energy_contribution(int pid)
Compute the short-range energy of a particle.
Definition energy.cpp:115
void calculate_long_range_fields()
Calculate dipole fields.
Definition energy.cpp:141
std::shared_ptr< Observable_stat > calculate_energy()
Calculate the total energy.
Definition energy.cpp:40
A stripped-down version of std::span from C++17.
Definition Span.hpp:38
const T * get_ptr(std::optional< T > const &opt)
Energy calculation.
double calc_non_bonded_pair_energy(Particle const &p1, Particle const &p2, IA_parameters const &ia_params, Utils::Vector3d const &d, double const dist, Coulomb::ShortRangeEnergyKernel::kernel_type const *coulomb_kernel)
Calculate non-bonded energies between a pair of particles.
double calc_kinetic_energy(Particle const &p)
Calculate kinetic energies for one particle.
void add_non_bonded_pair_energy(Particle const &p1, Particle const &p2, Utils::Vector3d const &d, double const dist, double const dist2, IA_parameters const &ia_params, Coulomb::ShortRangeEnergyKernel::kernel_type const *coulomb_kernel, Dipoles::ShortRangeEnergyKernel::kernel_type const *dipoles_kernel, Observable_stat &obs_energy)
Add non-bonded and short-range Coulomb energies between a pair of particles to the energy observable.
boost::optional< double > calc_bonded_energy(Bonded_IA_Parameters const &iaparams, Particle const &p1, Utils::Span< Particle * > partners, BoxGeometry const &box_geo, Coulomb::ShortRangeEnergyKernel::kernel_type const *kernel)
bool do_nonbonded(Particle const &p1, Particle const &p2)
Determine if the non-bonded interactions between p1 and p2 should be calculated.
Constraints< ParticleRange, Constraint > constraints
Various procedures concerning interactions between particles.
void short_range_loop(BondKernel bond_kernel, PairKernel pair_kernel, CellStructure &cell_structure, double pair_cutoff, double bond_cutoff, VerletCriterion const &verlet_criterion={})
Distance vector and length handed to pair kernels.
Struct holding all information for one particle.
Definition Particle.hpp:393
auto const & type() const
Definition Particle.hpp:416